scholarly journals TCF4 and HuR Mediated-METTL14 Suppresses Dissemination of Colorectal Cancer via N6-Methyladenosine-Dependent Silencing of ARRDC4

Author(s):  
Hao Wang ◽  
Wei Wei ◽  
Zhong-Yuan Zhang ◽  
Yao Liu ◽  
Bin Shi ◽  
...  

Abstract Background: Metastasis remains the major obstacle to improved survival for colorectal cancer (CRC) patients. Dysregulation of N6-methyladenosine (m6A) is causally associated with the development of metastasis through poorly understood mechanisms. Methods: The expression of METTL14 and its correlation with clinicopathological features were evaluated by western blot and immunohistochemistry. The roles of METTL14 in CRC metastasis were determined through in vitro and in vivo assays. The underlying mechanisms of METTL14 regulation were explored using transcriptome-sequencing, m6A-seguencing, methylated RNA immunoprecipitation (MeRIP), m6A dot blot, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assay.Results: METTL14 is functionally related to the inhibition of ARRDC4/ZEB1 signaling and to the consequent suppression of CRC metastasis. We unveil METTL14-mediated m6A modification profile and identify ARRDC4 as a direct downstream target of METTL14. Knockdown of METTL14 significantly enhances ARRDC4 mRNA stability relying on the “reader” protein YHTDF2 dependent manner. Moreover, TCF4 can induce METTL14 protein expression, and HuR suppresses METTL14 expression by directly binding to its promoter. Clinically, decreased METTL14 is correlated with poor prognosis and acts as an independent predictor of CRC survival. Conclusion: Our data suggest that TCF4 and HuR mediated-METTL14 can trigger the metastasis of CRC during cancer development via YHTDF2/ARRDC4/ZEB1 axis, which imposes great challenge that inhibition of METTL14 is a potential approach for cancer treatment.

2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


Author(s):  
Zhibin Liao ◽  
Hongwei Zhang ◽  
Chen Su ◽  
Furong Liu ◽  
Yachong Liu ◽  
...  

Abstract Background Aberrant expressions of long noncoding RNAs (lncRNAs) have been demonstrated to be related to the progress of HCC. The mechanisms that SNHG14 has participated in the development of HCC are obscure. Methods Quantitative real-time PCR (qRT-PCR) was used to measure the lncRNA, microRNA and mRNA expression level. Cell migration, invasion and proliferation ability were evaluated by transwell and CCK8 assays. The ceRNA regulatory mechanism of SNHG14 was evaluated by RNA immunoprecipitation (RIP) and dual luciferase reporter assay. Tumorigenesis mouse model was used to explore the roles of miR-876-5p in vivo. The protein levels of SSR2 were measured by western blot assay. Results In this study, we demonstrated that SNHG14 was highly expressed in HCC tissues, meanwhile, the elevated expression of SNHG14 predicted poor prognosis in patients with HCC. SNHG14 promoted proliferation and metastasis of HCC cells. We further revealed that SNHG14 functioned as a competing endogenous RNA (ceRNA) for miR-876-5p and that SSR2 was a downstream target of miR-876-5p in HCC. Transwell, CCK8 and animal experiments exhibited miR-876-5p inhibited HCC progression in vitro and in vivo. By conducting rescue experiments, we found the overexpression of SSR2 or knocking down the level of miR-876-5p could reverse the suppressive roles of SNHG14 depletion in HCC. Conclusion SNHG14 promotes HCC progress by acting as a sponge of miR-876-5p to regulate the expression of SSR2 in HCC.


Author(s):  
Dan Song ◽  
Ming Guo ◽  
Shuai Xu ◽  
Xiaotian Song ◽  
Bin Bai ◽  
...  

Abstract Background Pseudouridine synthase (PUS) 7 is a member of the PUS family that catalyses pseudouridine formation. It has been shown to be involved in intellectual development and haematological malignancies. Nevertheless, the role and the underlying molecular mechanisms of PUS7 in solid tumours, such as colorectal cancer (CRC), remain unexplored. This study elucidated, for the first time, the role of PUS7 in CRC cell metastasis and the underlying mechanisms. Methods We conducted immunohistochemistry, qPCR, and western blotting to quantify the expression of PUS7 in CRC tissues as well as cell lines. Besides, diverse in vivo and in vitro functional tests were employed to establish the function of PUS7 in CRC. RNA-seq and proteome profiling analysis were also applied to identify the targets of PUS7. PUS7-interacting proteins were further uncovered using immunoprecipitation and mass spectrometry. Results Overexpression of PUS7 was observed in CRC tissues and was linked to advanced clinical stages and shorter overall survival. PUS7 silencing effectively repressed CRC cell metastasis, while its upregulation promoted metastasis, independently of the PUS7 catalytic activity. LASP1 was identified as a downstream effector of PUS7. Forced LASP1 expression abolished the metastasis suppression triggered by PUS7 silencing. Furthermore, HSP90 was identified as a client protein of PUS7, associated with the increased PUS7 abundance in CRC. NMS-E973, a specific HSP90 inhibitor, also showed higher anti-metastatic activity when combined with PUS7 repression. Importantly, in line with these results, in human CRC tissues, the expression of PUS7 was positively linked to the expression of HSP90 and LASP1, and patients co-expressing HSP90/PUS7/LASP1 showed a worse prognosis. Conclusions The HSP90-dependent PUS7 upregulation promotes CRC cell metastasis via the regulation of LASP1. Thus, targeting the HSP90/PUS7/LASP1 axis may be a novel approach for the treatment of CRC.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yixin Tong ◽  
Yuan Huang ◽  
Yuchao Zhang ◽  
Xiangtai Zeng ◽  
Mei Yan ◽  
...  

AbstractAt present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.


2021 ◽  
Author(s):  
Jun Sun ◽  
Wei Wu ◽  
Xiaofeng Tang ◽  
Feifei Zhang ◽  
Cheng Ju ◽  
...  

Background: WT161, as a selective HDAC6 inhibitor, has been shown to play anti-tumor effects on several kinds of cancers. The aim of this study is to explore the roles of WT161 in osteosarcoma and its underlying mechanisms. Methods: The anti-proliferative effect of WT161 on osteosarcoma cells was examined using MTT assay and colony formation assay. Cell apoptosis was analyzed using flow cytometer. The synergistic effect was evaluated by isobologram analysis using CompuSyn software. The osteosarcoma xenograft models were established to evaluate the anti-proliferative effect of WT161 in vivo. Results: WT161 suppressed the cell growth and induced apoptosis of osteosarcoma cells in a dose- and time-dependent manner. Mechanistically, we found that WT161 treatment obviously increased the protein level of PTEN and decreased the phosphorylation level of AKT. More importantly, WT161 show synergistic inhibition with 5-FU on osteosarcoma cells in vitro and in vivo. Conclusions: These results indicate that WT161 inhibits the growth of osteosarcoma through PTEN and has a synergistic efficiency with 5-FU.


2020 ◽  
Vol 34 ◽  
pp. 205873842095459
Author(s):  
Jijun Wang ◽  
Fan Wu ◽  
Yaoyao Li ◽  
Lei Pang ◽  
Xiaohong Wang ◽  
...  

Introduction: This work was to explore the connection of KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) and microRNA-4319 (miR-4319), and to investigate the associated underlying mechanisms in gastric cancer (GC) progression. Methods: Quantitative real-time PCR was performed to measure KCNQ1OT1, miR-4319 and DNA-damage regulated autophagy modulator 2 (DRAM2) expression levels in GC cells. Moreover, expression level of KCNQ1OT1 and DRAM2 in GC tissues was analyzed at ENCORI website ( http://starbase.sysu.edu.cn/index.php ). Cell proliferation, colony formation assay and flow cytometry assays were performed to analyze effects of KCNQ1OT1, miR-4319 and DRAM2 on cell growth and death. Dual-luciferase activity reporter assay and RNA immunoprecipitation assay was conducted to verify the interactions of KCNQ1OT1 or DRAM2 and miR-4319. Results and Conclusion: We found KCNQ1OT1 level was increased in tumor tissues and cells. Force the expression of KCNQ1OT1 promotes, while knockdown KCNQ1OT1 inhibits GC cell growth. Further studies indicated miR-4319 functioned as a bridge between KCNQ1OT1 and DRAM2. Finally, we showed KCNQ1OT1/miR-4319/DRAM2 axis regulates GC cell growth in vitro and in vivo. lncRNA KCNQ1OT1 promotes GC progression by sponging miR-4319 to upregulate DRAM2, indicating KCNQ1OT1 might be a promising target for GC treatment.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-321386
Author(s):  
Shushu Song ◽  
Yinghong Shi ◽  
Weicheng Wu ◽  
Hao Wu ◽  
Lei Chang ◽  
...  

ObjectiveDysfunction of endoplasmic reticulum (ER) proteins is closely related to homeostasis disturbance and malignant transformation of hepatocellular carcinoma (HCC). Reticulons (RTN) are a family of ER-resident proteins critical for maintaining ER function. Nevertheless, the precise roles of RTN in HCC remain largely unclear. The aim of the study is to examine the effect of reticulon family member RTN3 on HCC development and explore the underlying mechanisms.DesignClinical HCC samples were collected to assess the relationship between RTN3 expression and patients’ outcome. HCC cell lines were employed to examine the effects of RTN3 on cellular proliferation, apoptosis and signal transduction in vitro. Nude mice model was used to detect the role of RTN3 in modulating tumour growth in vivo.ResultsWe found that RTN3 was highly expressed in normal hepatocytes but frequently downregulated in HCC. Low RTN3 expression predicted poor outcome in patients with HCC in TP53 gene mutation and HBV infection status-dependent manner. RTN3 restrained HCC growth and induced apoptosis by activating p53. Mechanism studies indicated that RTN3 facilitated p53 Ser392 phosphorylation via Chk2 and enhanced subsequent p53 nuclear localisation. RTN3 interacted with Chk2, recruited it to ER and promoted its activation in an ER calcium-dependent manner. Nevertheless, the tumour suppressive effects of RTN3 were abrogated in HBV-positive cells. HBV surface antigen competed with Chk2 for RTN3 binding and blocked RTN3-mediated Chk2/p53 activation.ConclusionThe findings suggest that RTN3 functions as a novel suppressor of HCC by activating Chk2/p53 pathway and provide more clues to better understand the oncogenic effects of HBV.


Author(s):  
Xinyang Lu ◽  
Zhiqiang Liu ◽  
Xiaofei Ning ◽  
Lunhua Huang ◽  
Biao Jiang

The long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well known, evidence suggests that microRNA-197 (miR-197) might be involved in this event. In the present study, the significance of HOTAIR and miR-197 in the progression of colorectal cancer was detected in vitro and in vivo. We found that HOTAIR expression was significantly increased in colorectal cancer cells and tissues. In contrast, the expression of miR-197 was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation, migration, and invasion in vitro and in vivo. Moreover, HOTAIR modulated the progression of colorectal cancer by competitively binding miR-197. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of colorectal cancer.


2020 ◽  
Author(s):  
Da Huang ◽  
Fan Xiao ◽  
Fuzhou Hua ◽  
Zhenzhong Luo ◽  
Zhaoxia Huang ◽  
...  

Abstract Background: Jumonji AT-rich interactive domain 1B(JARID1B) has been shown to be upregulated in many human cancers and plays a critical role in the development of cancers cells. Nevertheless, its functional role in colorectal cancer (CRC) progression is not fully understood. Methods: Herein, JARID1B expression levels were detected in clinical CRC samples by western blotting and qRT-PCR. DLD-1 cells with JARID1B knockdown or overexpression by stably transfected plasmids were used in vitro and in vivo study. Colony formation, 5-ethynyl-20-deoxyuridine (EdU) and Real Time Cellular Analysis(RTCA) assays were used to detect cell proliferation and growth. Transcriptome and CHIP assays were used to examine the molecular biology changes and molecular interaction in these cells. Nude mice was utilized to study the correlation of JARID1B and tumor growth in vivo. Results: Here, we first observed that JARID1B was significantly upregulated in CRC tissue compared to adjacent normal tissues. In CRC patients, JARID1B high expression was positively relation with poor overall survival. Multivariate analyses revealed that high JARID1B expression was an independent predictive marker for the poor prognosis of CRC. In addition, we found that JARID1B promoted CRC cells proliferation by Wnt/β-catenin signaling pathway. Further studies demonstrated CDX2 as a downstream target of JARID1B, and our data demonstrated that CDX2 is crucial for JARID1B -mediated Wnt/β-catenin signaling pathway. Mechanistically, we demonstrated that JARID1B regulated CDX2 expression through demethylation of H3K4me3. Conclusions: CDX2 inhibited by JARID1B-derived H3K4me3 methylation promoted cells proliferation of CRC via Wnt/β-catenin signaling pathway. Therefore, our studies provided a novel insight into the role of JARID1B in CRC cells proliferation and potential new molecular target for treating CRC.


2020 ◽  
Author(s):  
Congcong Zhu ◽  
Long Zhang ◽  
Senlin Zhao ◽  
Weixing Dai ◽  
Yun Xu ◽  
...  

Abstract Background: UPF1 is proved to dysregulate in multiple tumors and influence carcinogenesis. However, the role of UPF1 on oxaliplatin resistance in colorectal cancer (CRC) remains unknown.Methods: Firstly, we investigated the clinical relevance of UPF1 in CRC patients. Then, we explored the influence of UPF1 on chemoresistance to oxaliplatin in vitro and in vivo. Finally, we disclosed the underlying mechanisms of oxaliplatin resistance induced by UPF1.Results: UPF1 is upregulated in CRC and overexpression of UPF1 more likely results in recurrence in CRC patients and predicts a poorer overall survival (OS). UPF1 maintains stemness in CRC cell lines and promotes chemoresistance to oxaliplatin in CRC. UPF1-induced oxaliplatin resistance can be associated with interaction with TOP2A and increasing phosphorylated TOP2A.Conclusions: UPF1 was overexpressed and predicted a poor prognosis in CRC. UPF1 enhanced the stemness and chemoresistance to oxaliplatin by interaction with TOP2A and increase of phosphorylated TOP2A in CRC, which may provide a new therapy strategy for chemoresistance to oxaliplatin in CRC patients.


Sign in / Sign up

Export Citation Format

Share Document