scholarly journals ADAMTS-13-Regulated Nrf2 Signaling Inhibits Ferroptosis to Ameliorate Cisplatin-Induced Acute Kidney Injury

Author(s):  
Xiaoyan Meng ◽  
Wenjing Huang ◽  
Weiwei Mo ◽  
Tingting Shu ◽  
Haoqiang Yang ◽  
...  

Abstract Background: ADAMTS-13 plays an important role in acute kidney injury (AKI), but the mechanism of cisplatin (CP) induced AKI remains unclear. Ferroptosis is increased in CP-induced AKI, and ADAMTS13 levels are associated with ferritin expression. In this article, we will explore the relationship between the three.Methods: After CP induction, mice were given 0.1 and 0.3nmol/kg ADAMTS-13, and then Scr and BUN were detected by the kits. The pathological changes of renal tissue were observed by staining with HE and PAS staining, and Western blot detected the expressions of KIM1 and NGAL in renal tissu. Perl's staining detected iron deposition in renal tissues, the kits detected iron levels, and western blot detected the expression of ferroptosis related proteins. Then the mechanism was further explored by adding ferroptosis inhibitors Ferrostatin 1 (Fer-1) and iron supplements Fe. The expression of Nrf2 pathway related proteins were detected by Western blot.Results: ADAMTS13 alleviated CP-induced ferroptosis in AKI mice with renal function impairment and tubular damage. Fer-1partially reversed CP-induced AKI, and Fe exacerbated this effect. ADAMTS13 alleviated CP-induced inflammatory response and oxidative stress in AKI mice, during which the Nrf2 signaling pathway was abnormal.Conclusion:ADAMTS-13-regulated Nrf2 signaling inhibits ferroptosis to ameliorate CP-induced AKI.

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Yuhan Cao ◽  
Qiancheng Xu ◽  
Yuwei Wang ◽  
Cong Fu

Abstract Background and Aims Sepsis induced acute kidney injury (AKI) is common in intensive care unit in multiple organ failure patients. Ticagrelor is an anti-platelet drug that widely applied in coronary artery disease. In addition, ticagrelor can increase the level of adenosine. Recent study had indicated that ticagrelor can protect renal function in sepsis induced AKI. However, the detailed mechanism was still unknown. Accordingly, we designed this trial to investigate if the ticagrelor alleviated sepsis induced AKI and demonstrated the potential mechanism that how ticagrelor works. Method C57BL6J mouse received oral ticagrelor (20mg/kg and 50mg/kg) for 7 days and caecum ligation and puncture (CLP) were performed. Adenosine-receptor antagonist was administered (10mg/kg, intraperitoneal injection) to block the adenosine pathway 2h before CLP. After 24h, serum creatinine was measured. PAS staining was used and TUNEL staining was applied to determine the pathological changes and cell apoptosis. Plasma concentrations of TNF-α and IL-1β were detected. Kidney tissue level of TNF-α and IL-1β were determined via qRT-PCR. Western blot was used to determine the expression of signal molecular in kidney. Results In ticagrelor group, PAS staining (fig. 1) showed that less swelling of renal tubules and TUNEL staining (fig. 2) showed the less cell apoptosis compared to CLP. Serum creatinine was significantly lower in ticagrelor group. Plasma TNF-α and IL-1β and kidney expression of TNF-α and IL-1β were significantly lower in ticagrelor group. Adenosine-receptor antagonist significantly blocked the effect of ticagrelor (fig. 3 ang 4). Western blot showed that ticagrelor activate the phosphorylation of AKT and mTOR in kidney. Adenosine-receptor antagonist inhibited the activation of AKT and mTOR (fig. 5). Conclusion The protective effect of ticagrelor was dependent on adenosine-receptor activation with downstream upregulation of phosphorylation of AKT and mTOR in sepsis induced AKI.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhiya Deng ◽  
Maomao Sun ◽  
Jie Wu ◽  
Haihong Fang ◽  
Shumin Cai ◽  
...  

AbstractOur previous studies showed that silent mating-type information regulation 2 homologue-1 (SIRT1, a deacetylase) upregulation could attenuate sepsis-induced acute kidney injury (SAKI). Upregulated SIRT1 can deacetylate certain autophagy-related proteins (Beclin1, Atg5, Atg7 and LC3) in vitro. However, it remains unclear whether the beneficial effect of SIRT1 is related to autophagy induction and the underlying mechanism of this effect is also unknown. In the present study, caecal ligation and puncture (CLP)-induced mice, and an LPS-challenged HK-2 cell line were established to mimic a SAKI animal model and a SAKI cell model, respectively. Our results demonstrated that SIRT1 activation promoted autophagy and attenuated SAKI. SIRT1 deacetylated only Beclin1 but not the other autophagy-related proteins in SAKI. SIRT1-induced autophagy and its protective effect against SAKI were mediated by the deacetylation of Beclin1 at K430 and K437. Moreover, two SIRT1 activators, resveratrol and polydatin, attenuated SAKI in CLP-induced septic mice. Our study was the first to demonstrate the important role of SIRT1-induced Beclin1 deacetylation in autophagy and its protective effect against SAKI. These findings suggest that pharmacologic induction of autophagy via SIRT1-mediated Beclin1 deacetylation may be a promising therapeutic approach for future SAKI treatment.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yue Zhang ◽  
Hongdong Huang ◽  
Wenhu Liu ◽  
Sha Liu ◽  
Xue Yan Wang ◽  
...  

AbstractThe role of microRNA-21-5p (miR-21-5p) in sepsis-induced acute kidney injury (AKI) has been seldom discussed. Therefore, the objective of this present study was to investigate the mechanism of endothelial progenitor cells-derived exosomes (EPCs-exos) in sepsis-induced AKI via miR-21-5p/runt-related transcription factor 1 (RUNX1) axis. miR-21-5p was downregulated and RUNX1 was upregulated in the kidney of cecal ligation and puncture (CLP) rats, and miR-21-5p targeted RUNX1. Elevation of miR-21-5p improved renal function and renal tissue pathological damage, attenuated serum inflammatory response, as well as reduced apoptosis and oxidative stress response in renal tissues, and regulated endothelial glycocalyx damage marker proteins syndecan-1 and heparanase-1 in CLP rats. Overexpression of RUNX1 abolished the impacts of elevated miR-21-5p in CLP rats. Also, EPCs-exos upregulated miR-21-5p expression, and functioned similar to elevation of miR-21-5p for CLP rats. Downregulating miR-21-5p partially reversed the effects of EPCs-exos on sepsis-induced AKI. Collectively, our study suggests that EPCs release miR-21-5p-containing exosomes to alleviate sepsis-induced AKI through RUNX1 silencing.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 333-342
Author(s):  
Yawei Feng ◽  
Jun Liu ◽  
Ranliang Wu ◽  
Peng Yang ◽  
Zhiqiang Ye ◽  
...  

AbstractBackground and aimAcute kidney injury (AKI) is a common complication of sepsis. Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) plays a vital role in various diseases, including AKI. This study aimed to investigate the function and mechanism of NEAT1 in sepsis-induced AKI.Materials and methodsA septic AKI model was established by treating HK-2 cells with lipopolysaccharide (LPS). The levels of NEAT1 and miR-22-3p were measured by quantitative real-time PCR. Cell apoptosis was assessed by flow cytometry. The levels of apoptosis-related protein and autophagy-related factors were examined by the western blot assay. An enzyme-linked immunosorbent assay was used to calculate the contents of inflammatory factors. The interaction between NEAT1 and miR-22-3p was validated by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay. The levels of nuclear factor (NF)-κB pathway-related proteins were evaluated by the western blot assay.ResultsNEAT1 was upregulated, while miR-22-3p was downregulated in patients with sepsis and in LPS-stimulated HK-2 cells. LPS treatment triggered cell apoptosis, autophagy, and inflammatory response in HK-2 cells. NEAT1 knockdown attenuated LPS-induced cell injury. NEAT1 modulated LPS-triggered cell injury by targeting miR-22-3p. Furthermore, NEAT1 regulated the NF-κB pathway by modulating miR-22-3p.ConclusionDepletion of NEAT1 alleviated sepsis-induced AKI via regulating the miR-22-3p/NF-κB pathway.


2021 ◽  
pp. 1-10
Author(s):  
Guang Fu ◽  
Hai-chao Zhan ◽  
Hao-li Li ◽  
Jun-fu Lu ◽  
Yan-hong Chen ◽  
...  

Objective: The objective of this study was to assess the relationship between serum procalcitonin (PCT) and acute kidney injury (AKI) induced by bacterial septic shock. Methods: A retrospective study was designed which included patients who were admitted to the ICU from January 2015 to October 2018. Multiple logistic regression and receiver operating characteristic (ROC) as well as smooth curve fitting analysis were used to assess the relationship between the PCT level and AKI. Results: Of the 1,631 patients screened, 157 patients were included in the primary analysis in which 84 (53.5%) patients were with AKI. Multiple logistic regression results showed that PCT (odds ratio [OR] = 1.017, 95% confidence interval [CI] 1.009–1.025, p < 0.001) was associated with AKI induced by septic shock. The ROC analysis showed that the cutoff point for PCT to predict AKI development was 14 ng/mL, with a sensitivity of 63% and specificity 67%. Specifically, in multivariate piecewise linear regression, the occurrence of AKI decreased with the elevation of PCT when PCT was between 25 ng/mL and 120 ng/mL (OR 0.963, 95% CI 0.929–0.999; p = 0.042). The AKI increased with the elevation of PCT when PCT was either <25 ng/mL (OR 1.077, 95% CI 1.022–1.136; p = 0.006) or >120 ng/mL (OR 1.042, 95% CI 1.009–1.076; p = 0.013). Moreover, the PCT level was significantly higher in the AKI group only in female patients aged ≤75 years (p = 0.001). Conclusions: Our data revealed a nonlinear relationship between PCT and AKI in septic shock patients, and PCT could be used as a potential biomarker of AKI in female patients younger than 75 years with bacterial septic shock.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yinwu Bao ◽  
Mengqiu Bai ◽  
Huanhuan Zhu ◽  
Yuan Yuan ◽  
Ying Wang ◽  
...  

AbstractDemethylase Tet2 plays a vital role in the immune response. Acute kidney injury (AKI) initiation and maintenance phases are marked by inflammatory responses and leukocyte recruitment in endothelial and tubular cell injury processes. However, the role of Tet2 in AKI is poorly defined. Our study determined the degree of renal tissue damage associated with Tet2 gene expression levels in a cisplatin-induced AKI mice model. Tet2-knockout (KO) mice with cisplatin treatment experienced severe tubular necrosis and dilatation, inflammation, and AKI markers’ expression levels than the wild-type mice. In addition, the administration of Tet2 plasmid protected Tet2-KO mice from cisplatin-induced nephrotoxicity, but not Tet2-catalytic-dead mutant. Tet2 KO was associated with a change in metabolic pathways like retinol, arachidonic acid, linolenic acid metabolism, and PPAR signaling pathway in the cisplatin-induced mice model. Tet2 expression is also downregulated in other AKI mice models and clinical samples. Thus, our results indicate that Tet2 has a renal protective effect during AKI by regulating metabolic and inflammatory responses through the PPAR signaling pathway.


2017 ◽  
Vol 43 (4) ◽  
pp. 1673-1688 ◽  
Author(s):  
Ou Li ◽  
Xiaodong Geng ◽  
Qian Ma ◽  
Weiwei Wang ◽  
Ran Liu ◽  
...  

Background/Aims: Rhabdomyolysis, one of the leading causes of acute kidney injury (AKI), develops after trauma, drug toxicity, infections, burns, and physical exertion. The aim of this study was to investigate differences in gene and protein expression to elucidate the pathogenesis of rhabdomyolysis (RM)-induced AKI. Methods: In this study, we used glycerol induced renal injury as a model of RM-induced AKI. Affymetrix U133 plus 2.0 microarrays were used to perform gene microarray analysis. Isobaric tagging with related and absolute quantitation (iTRAQ) labeling mass spectrometry (MS) was applied to screen and identify differentially expressed proteins between RM-induced AKI and normal murine renal tissue. Verification experiments included immunohistochemistry (IHC), real-time PCR, Western blotting, and the measurement of ATP and ROS production. HK-2 cells were incubated in vitro with ferrous myoglobin and pcDNA-TTR, followed by assays to detect cell proliferation, ROS and apoptosis. Results: According to gene microarray and iTRAQ-MS analysis, we screened 17 common elements. After multiple analyses, we selected transthyretin (TTR) as our focus and investigated TTR in the kidney. Verification experiments with IHC confirmed differential expression levels of TTR proteins. Furthermore, Western blotting showed a stepwise decrease in TTR in AKI renal tissues. Cell-based experiments showed that overexpression of TTR could improve HK-2 cell viability and inhibit apoptosis. TTR reduced apoptosis by decreasing the accumulation of reactive oxygen species (ROS). Conclusion: This study reports a possible mechanism for RM-induced AKI and suggests that reductions in TTR could increase the generation of ROS and induce apoptosis. TTR may be a potentially valuable target for RM-induced AKI.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Long Zhao ◽  
Yan Xu

Abstract Background and Aims Studies have shown that serum response factor (SRF) is increased in chronic kidney injury, such as diabetic nephropathy, hyperuricemic nephropathy and renal cell carcinoma. The objective is to explore the early diagnostic value of SRF in acute kidney injury (AKI). Method AKI-related microarray data were analyzed, and the expression and location of SRF were investigated in the early phase of AKI. Results Bioinformatics results demonstrated that SRF was dramatically elevated 2-4 h after ischemia/reperfusion (I/R) in mouse renal tissue. In I/R rats, SRF was mostly expressed and located in renal tubular epithelial cells (TECs). SRF started to increase at 1 h, peaked at 3-9 h and started to decrease at 12 h after I/R. The areas under the ROC curve of renal SRF mRNA, renal SRF protein, urinary SRF, serum SRF and serum creatinine (Scr) were 87.9%, 83.0%, 81.3%, 78.8%, 68.8%, respectively. Conclusion SRF is remarkably upregulated in early (before 24 h) AKI and can replace Scr as a potential new early diagnostic biomarker of AKI.


2018 ◽  
Vol 9 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Jing Shi ◽  
Guofeng Wu ◽  
Xiaohua Zou ◽  
Ke Jiang

Background/Aims: Cardiac surgery-associated acute kidney injury (CSA-AKI) is one of the most common postoperative complications in intensive care medicine. Baicalin has been shown to have anti-inflammatory and antioxidant roles in various disorders. We aimed to test the protective effects of baicalin on CSA-AKI using a rat model. Methods: Sprague-Dawley rats underwent 75 min of cardiopulmonary bypass (CPB) with 45 min of cardioplegic arrest (CA) to establish the AKI model. Baicalin was administered at different doses intragastrically 1 h before CPB. The control and treated rats were subjected to the evaluation of different kidney injury index and inflammation biomarkers. Results: Baicalin significantly attenuated CPB/CA-induced AKI in rats, as evidenced by the lower levels of serum creatinine, serum NGAL, and Kim1. Baicalin remarkably inhibited oxidative stress, reflected in the decreased malondialdehyde and myeloperoxidase activity, and enhanced superoxide dismutase activity and glutathione in renal tissue. Baicalin suppressed the expression of IL-18 and iNOS, and activated the Nrf2/HO-1 pathway. Conclusion: Our data indicated that baicalin mediated CPB/CA-induced AKI by decreasing the oxidative stress and inflammation in the renal tissues, and that baicalin possesses the potential to be developed as a therapeutic tool in clinical use for CSA-AKI.


Sign in / Sign up

Export Citation Format

Share Document