Single Nucleotide Polymorphisms (SNPs) Within Vkorc1 in Rodent Populations in a Tropical City-state: Implications for Anticoagulant Rodenticide Use for Rodent Control

Author(s):  
Cliff Chua ◽  
Mahathir Humaidi ◽  
Lee Ching Ng ◽  
Joel Aik

Abstract Anticoagulant rodenticides are commonly used in rodent control because they are economical and have great deployment versatility. However, rodents with Single Nucleotide Polymorphism (SNP) mutations within the Vkorc1 gene are resistant to the effects of anticoagulant rodenticide use and this influences the effectiveness of control strategies that rely on such rodenticides. This study examined the prevalence of rat SNP mutations in Singapore to inform the effectiveness of anticoagulant rodenticide use. A total of 130 rat tail samples, comprising 83 Rattus norvegicus (63.8%) and 47 Rattus rattus spp. (36.2%) were conveniently sampled from November 2016 to December 2019 from urban settings and sequenced at exon 3 of Vkorc1. Sequencing analysis revealed 4 synonymous and 1 non-synonymous mutations in Rattus rattus spp. samples. A novel synonymous mutation of L108L was identified and not previously reported in other studies. Non-synonymous SNPs were not detected in the notable codons of 120, 128 and 139 in Norway rats, where these regions are internationally recognised to be associated with resistance from prior studies. Our findings suggest that the prevalence of anticoagulant rodenticide resistance in Singapore is low. Continued monitoring of rodenticide resistance is important for informing rodent control strategies aimed at reducing rodent-borne disease transmission.

Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 547 ◽  
Author(s):  
Peng Zhang ◽  
Lori S. Tillmans ◽  
Stephen N. Thibodeau ◽  
Liang Wang

Genome-wide association studies have identified over 150 risk loci that increase prostate cancer risk. However, few causal variants and their regulatory mechanisms have been characterized. In this study, we utilized our previously developed single-nucleotide polymorphisms sequencing (SNPs-seq) technology to test allele-dependent protein binding at 903 SNP sites covering 28 genomic regions. All selected SNPs have shown significant cis-association with at least one nearby gene. After preparing nuclear extract using LNCaP cell line, we first mixed the extract with dsDNA oligo pool for protein–DNA binding incubation. We then performed sequencing analysis on protein-bound oligos. SNPs-seq analysis showed protein-binding differences (>1.5-fold) between reference and variant alleles in 380 (42%) of 903 SNPs with androgen treatment and 403 (45%) of 903 SNPs without treatment. From these significant SNPs, we performed a database search and further narrowed down to 74 promising SNPs. To validate this initial finding, we performed electrophoretic mobility shift assay in two SNPs (rs12246440 and rs7077275) at CTBP2 locus and one SNP (rs113082846) at NCOA4 locus. This analysis showed that all three SNPs demonstrated allele-dependent protein-binding differences that were consistent with the SNPs-seq. Finally, clinical association analysis of the two candidate genes showed that CTBP2 was upregulated, while NCOA4 was downregulated in prostate cancer (p < 0.02). Lower expression of CTBP2 was associated with poor recurrence-free survival in prostate cancer. Utilizing our experimental data along with bioinformatic tools provides a strategy for identifying candidate functional elements at prostate cancer susceptibility loci to help guide subsequent laboratory studies.


2018 ◽  
Vol 46 (4) ◽  
pp. 937-944 ◽  
Author(s):  
Robert Rauscher ◽  
Zoya Ignatova

Ribosomes translate mRNAs with non-uniform speed. Translation velocity patterns are a conserved feature of mRNA and have evolved to fine-tune protein folding, expression and function. Synonymous single-nucleotide polymorphisms (sSNPs) that alter programmed translational speed affect expression and function of the encoded protein. Synergistic advances in next-generation sequencing have led to the identification of sSNPs associated with disease penetrance. Here, we draw on studies with disease-related proteins to enhance our understanding of mechanistic contributions of sSNPs to functional alterations of the encoded protein. We emphasize the importance of identification of sSNPs along with disease-causing mutations to understand genotype–phenotype relationships.


Author(s):  
Marzia Del Re ◽  
Federico Cucchiara ◽  
Eleonora Rofi ◽  
Lorenzo Fontanelli ◽  
Iacopo Petrini ◽  
...  

Abstract Background It is still unclear how to combine biomarkers to identify patients who will truly benefit from anti-PD-1 agents in NSCLC. This study investigates exosomal mRNA expression of PD-L1 and IFN-γ, PD-L1 polymorphisms, tumor mutational load (TML) in circulating cell-free DNA (cfDNA) and radiomic features as possible predictive markers of response to nivolumab and pembrolizumab in metastatic NSCLC patients. Methods Patients were enrolled and blood (12 ml) was collected at baseline before receiving anti-PD-1 therapy. Exosome-derived mRNA and cfDNA were extracted to analyse PD-L1 and IFN-γ expression and tumor mutational load (TML) by digital droplet PCR (ddPCR) and next-generation sequencing (NGS), respectively. The PD-L1 single nucleotide polymorphisms (SNPs) c.-14-368 T > C and c.*395G > C, were analysed on genomic DNA by Real-Time PCR. A radiomic analysis was performed on the QUIBIM Precision® V3.0 platform. Results Thirty-eight patients were enrolled. High baseline IFN-γ was independently associated with shorter median PFS (5.6 months vs. not reached p = 0.0057), and levels of PD-L1 showed an increase at 3 months vs. baseline in patients who progressed (p = 0.01). PD-L1 baseline levels showed significant direct and inverse relationships with radiomic features. Radiomic features also inversely correlated with PD-L1 expression in tumor tissue. In subjects receiving nivolumab, median PFS was shorter in carriers of c.*395GG vs. c.*395GC/CC genotype (2.3 months vs. not reached, p = 0.041). Lastly, responders had higher non-synonymous mutations and more links between co-occurring genetic somatic mutations and ARID1A alterations as well. Conclusions A combined multiparametric approach may provide a better understanding of the molecular determinants of response to immunotherapy.


2020 ◽  
Vol 47 (5) ◽  
pp. 425
Author(s):  
Mengyu Liu ◽  
Xiaofeng Liu ◽  
Junhua Hu ◽  
Yang Xue ◽  
Xiaochun Zhao

D-limonene is the main component of citrus essential oils. In the monoterpene biosynthetic pathway, geranyl diphosphate reacts with monoterpenes to form the prenyl-carbocation intermediate to produce d-limonene. In this study, d-limonene synthase (FcLS) genes were first isolated from Rongan kumquat (Fortunella crassifolia Swingle). Sequencing analysis revealed that the open reading frames of 18 FcLS genes contain 12 single nucleotide polymorphisms, which resulted in the variation of FcLS proteins, indicating that the limonene synthase genes are a large family in F. crassifolia. This phenomenon has not been reported in Citrus. The predicted FcLS proteins showed a high amino acid sequence identity with other Citrus limonene synthases and also had the typical structures of limonene synthase protein. FcLS1 was validated to be a functional d-limonene synthase by prokaryotic expression.


2014 ◽  
Vol 08 (01) ◽  
pp. 079-084 ◽  
Author(s):  
Nalini Aswath ◽  
Bhuminathan Swamikannu ◽  
Sankar Narayanan Ramakrishnan ◽  
Rajendran Shanmugam ◽  
Jayakar Thomas ◽  
...  

ABSTRACT Objective: In the present study, we have investigated the genetic status of CTSC gene in a HMS subject, who along with her parents belonged to non-Jewish South Indian Dravidian community. Materials and Methods: Genomic deoxyribonucleic acid isolated from the peripheral blood of the subject was amplified with CTSC exon specific primers and were analyzed by direct sequencing. Results: Sequencing analysis identified Ile453Val mutation within exon 7 of CTSC gene in heterozygous condition, and two single nucleotide polymorphisms (SNPs) within intron 2 and 5 in homozygous condition. Conclusion: The present study has identified for the first time the association of Ile453Val mutation within exon 7 and the two SNPs in a subject with HMS.


2008 ◽  
Vol 75 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Laura Ordovas ◽  
Pilar Zaragoza ◽  
Juan Altarriba ◽  
Clementina Rodellar

The solute carrier family 27 member 1 (SLC27A1) is an integral membrane protein involved in the transport of long-chain fatty acids across the plasma membrane. This protein has been implicated in diet-induced obesity and is thought to be important in the control of energy homeostasis. In previous reports, our group described the isolation and characterization of the bovineSLC27A1gene. The bovine gene is organized in 13 exons spanning over more than 40 kb of genomic DNA and maps in BTA 7 where several quantitative trait loci for fat related traits have been described. Because of its key role in lipid metabolism and its genomic localization, in the present work the search for variability in the bovineSLC27A1gene was carried out with the aim of evaluating its potential association with milk fat content in dairy cattle. By sequencing analysis of all exons and flanking regions 14 new single nucleotide polymorphisms (SNPs) were identified: 1 in the promoter, 7 in introns and 6 in exons. Allele frequencies of all the SNPs were calculated by minisequencing analysis in two groups of Holstein-Friesian animals with highest and lowest milk-fat content estimated breeding values as well as in animals of two Spanish cattle breeds, Asturiana de los Valles and Menorquina. In the conditions assayed, no significant differences between Holstein-Friesian groups were found for any of the SNPs, suggesting that theSLC27A1gene may have a poor or null effect on milk fat content. In Asturiana and Menorquina breeds all the positions were polymorphic with the exception of SNPs 1 and 8 in which C allele was fixed in both of them.


Open Medicine ◽  
2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Yijin Lin ◽  
Jintao Yuan ◽  
Lihui Wang ◽  
Lan Wang ◽  
Yunjia Ma ◽  
...  

AbstractBackground. Many recent studies revealed that the single nucleotide polymorphisms have considerable effects on the susceptibility of cancer, such as prostate cancer, lung cancer and gastric cancer. The E-cadherin, a calcium-dependent transmembrane glycoprotein encoded by CDH1 gene, is critical for epithelial construction, intercellular adhesion and cell migration. Some associations have been reported between single nucleotide polymorphisms and gastric cancer in the Chinese population. Objective. To investigate whether the single nucleotide polymorphism in CDH1 gene is associated with the susceptibility of gastric cancer in the Chinese population. Material and methods. The genotypes of 5 known single nucleotide polymorphisms (rs33935154, rs121964871, rs121964874, rs121964875, rs121964876) were determined in 359 gastric cancer patients and 368 healthy controls. High resolution melting curve detection and sequencing analysis were used in the present study. Results. There is a statistical significance in the rs121964871 C>G polymorphism between gastric cancer patients and healthy controls (OR=1.769, 95%CI: 1.051-2.976). Elderly male individuals (>50 years of age) carrying this risk factor may be more susceptible to gastric cancer. Conclusions. The results indicated that the rs121964871 C>G polymorphism is associated with the susceptibility of gastric cancer in the Chinese population, with some age and sex-dependent tendencies observed.


2023 ◽  
Vol 83 ◽  
Author(s):  
L. M. Barbosa ◽  
M. B. Santiago ◽  
V. T. Moretto ◽  
D. Athanazio ◽  
D. Takahashi ◽  
...  

Abstract Toll-like receptor 9 (TLR9) is an important component of the innate immune system and have been associated with several autoimmune diseases, such as Systemic Lupus Erythematosus (SLE). The aim of this study was to investigate polymorphisms in TLR9 gene in a Brazilian SLE patients group and their association with clinical manifestation, particularly Jaccoud’s arthropathy (JA). We analyzed DNA samples from 204 SLE patients, having a subgroup of them presenting JA (n=24). A control group (n=133) from the same city was also included. TLR9 single nucleotide polymorphisms (SNPs) (−1237 C>T and +2848 G>A) were identified by sequencing analysis. The TLR9 gene genotype frequency was similar both in SLE patients and the control group. In the whole SLE population, an association between the homozygosis of allele C at position −1237 with psychosis and anemia (p < 0.01) was found. Likewise, the homozygosis of allele G at position +2848 was associated with a discoid rash (p < 0.05). There was no association between JA and TLR9 polymorphisms. These data show that TLR9 polymorphisms do not seem to be a predisposing factor for SLE in the Brazilian population, and that SNPs are not associated with JA.


Genome ◽  
2018 ◽  
Vol 61 (9) ◽  
pp. 653-661 ◽  
Author(s):  
Shuo Li ◽  
Rongsong Luo ◽  
Defang Lai ◽  
Min Ma ◽  
Fei Hao ◽  
...  

The Ujumqin sheep is one of the most profitable breeds in China, with unique multi-vertebral characteristics. We performed high-throughput genome resequencing of five multi-vertebral and three non-multi-vertebral sheep in an Ujumqin population. We identified the genomic regions that correlated with the germplasm characteristics to establish the cause of the “multi-vertebral” phenotype in this breed. Sequencing generated a total of 314 952 000 000 bp of raw data. The alignment rate of all the samples was between 98.53% and 99.11%, and the mean depth of coverage relative to the reference genome was between 11.58× and 14.92×. After comparing the differences between the two groups, we identified 21 homozygous single nucleotide polymorphisms (SNPs) in the mutant exons of 14 genes. Nineteen loci of 10 genes contained nonsynonymous mutations, while two loci contained synonymous mutations. Resequencing revealed homozygous mutations comprised of 44 indels located within exons of 19 genes. These indels included 37 frameshift mutations, 6 non-frameshift mutations, and 1 stopgain single nucleotide variation (SNV). Finally, comparisons of genotypic variations revealed 17 genes with homozygous mutations in their coding regions, 5 of which have previously been associated with vertebral development and the remaining 12 genes were newly identified in this study.


2021 ◽  
Vol 17 (1) ◽  
pp. 187-189
Author(s):  
Martina Piras ◽  
Alessandra Scano ◽  
Germano Orrù ◽  
Antonio Preti ◽  
Cinzia Marchese ◽  
...  

Bipolar disorder (BD) is amongst the most common heritable mental disorders, but the clarification of its genetic roots has proven to be very challenging. Many single nucleotide polymorphisms (SNPs) have been identified to be associated with BD. SNPs in the CACNA1C gene have emerged as the most significantly associated with the disease. The aim of the present study is to provide a concise description of SNP 1006737 variants identified by Real Time PCR and confirm sequencing analysis with the Sanger method in order to estimate the association with BD. The molecular method was tested on 47 Sardinian subjects of whom 23 were found to not be mutated, 1 was found to be a carrier of the homozygous A allele and 23 were found to be carriers of the heterozygous G allele. Moreover, the positive results of the preliminary application suggest that the development of the screener could be extended to the other 5 genetic variables identified as associated with BD.


Sign in / Sign up

Export Citation Format

Share Document