scholarly journals Seasonal and Sexual Variation in mRNA Expression of Selected Adipokine Genes Affecting Fat Deposition and Metabolism of the Emu (Dromaius Novaehollandiae)

Author(s):  
Ji Eun Kim ◽  
Darin Bennett ◽  
Kristina Wright ◽  
Kimberly M. Cheng

Abstract Emus are farmed for fat production. Oil rendered from their back and abdominal fat pads has good anti-oxidant and anti-inflammatory properties and has ingredients that promote cell growth. Our objective is to examine the mRNA expression of 7 emu adipokine genes (eFABP4, eSCD1, eAdipoQ, eAdipoR1, eAdipoR2, Lept and eLepR) to identify gene markers that may help improve emu fat production. Back and abdominal fat tissues from 11 adult emus were biopsied at four time points (April, June, August and November). Total RNA was isolated and cDNA was synthesized. Gene specific primers were designed for partial cloning fragments to amplify the open reading frame of the 7 genes. Lept was not expressed in emu fat tissue. Nucleotides and amino acids sequences of the 6 expressed gene were compared with homologs from other species and phylogenetic relationships established. Seasonal mRNA expression of each gene was assessed by quantitative RT-PCR and differential expression analysed by the 2−ΔΔCT method. The temporal mRNA expression pattern of the genes and the fat gain (kg) between time points association with gene expression level were determined. More whole-genome scanning studies are needed to develop novel molecular markers that can be applied to improve fat production in emus.

2005 ◽  
Vol 9 (4) ◽  
pp. 165-177 ◽  
Author(s):  
Corrie L. Gallant—Behm ◽  
Merle E. Olson ◽  
David A. Hart

Background: Skin wounds in red Duroc pigs heal with the formation of hypercontractile, hyperpigmented scars, similar in some respects to human hypertrophic scars. ObjectiveThe goal of this study was to characterize the mRNA expression patterns for a subset of relevant cytokines, growth factors, receptors, and transcription factors involved in the red Duroc scarring phenotype. Methods: Full-thickness and deep dermal wounds were created on the backs of juvenile female red Duroc pigs. Samples were taken every two weeks postwounding and total RNA and DNA were extracted and quantified. RT-PCR was performed using porcine gene-specific primers for 15 relevant molecules. Results: The majority of molecules examined exhibited a biphasic pattern of expression, with peaks of expression at days 14 and 56 postinjury. Conclusions: The molecular expression pattern observed correlates well with the gross healing phenotype and matrix molecule expression patterns previously reported in red Duroc pigs. These findings enhance our understanding of the processes associated with fibroproliferative scar-formation.


Phlebologie ◽  
1999 ◽  
Vol 28 (01) ◽  
pp. 1-6 ◽  
Author(s):  
Ch. Stetter ◽  
E. Schöpf ◽  
J. Norgauer ◽  
W. Vanscheidt ◽  
Y. Herouy

ZusammenfassungDie Dermatoliposklerose (DLS) entwickelt sich als Folge einer progredienten primären Varikosis oder eines postthrombotischen Syndroms (PTS). Trotz bestehender Hinweise auf eine veränderte intravasale fibrinolytische Aktivität bei der chronisch-venösen Insuffizienz (CVI), wurden bisher fibrinolytische Faktoren im perivaskulären Gewebe nicht untersucht. Kürzlich zeigten wir, daß bei Dermatoliposklerose Matrix-Metalloproteinasen exprimiert und aktiviert werden. Da spezifische fibrinolytische Faktoren wichtige Haupteffektoren der Matrix-Metalloproteinasenaktivierung sind, untersuchten wir kürzlich die Genexpression der Plasminogenaktivatoren vom Urokinasetyp (uPA) und vom Gewebetyp (tPA), des Urokinase-Rezeptor (uPA-R) sowie der Plasminogenaktivator-Inhibitoren (PAI-1 und PAI-2) in Gewebsbiopsien von Patienten mit Dermatoliposklerose. Zum Nachweis verwandten wir dabei die Technik der reversen Transkription und Polymerase-Kettenreaktion (RT-PCR). Es fand sich in allen Hautproben (n = 21) eine signifikant erhöhte mRNA-Expression von uPA und uPA-R im Vergleich zu gesunder Haut (n = 12). Dagegen konnte kein signifikanter Unterschied für mRNA-Transkripte von tPA, PAI-1 und PAI-2 nachgewiesen werden. Die Dermatoliposklerose zeichnet sich somit durch erhöhte transkriptionelle Expression von uPA und uPA-R aus. Eine gesteigerte De-novo-Synthese von uPA und uPA-R könnte daher bei der Aktivierung von Matrix-Metalloproteinasen und entsprechend in der Pathogenese des Ulcus cruris venosum eine zentrale Rolle spielen.


Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1105-1117 ◽  
Author(s):  
W John Haynes ◽  
Kit-Yin Ling ◽  
Robin R Preston ◽  
Yoshiro Saimi ◽  
Ching Kung

Abstract Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca2+ current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca2+ current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5′ neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed.


2021 ◽  
Vol 22 (7) ◽  
pp. 3784
Author(s):  
Véronique Noé ◽  
Carlos J. Ciudad

Therapeutic strategies for rare diseases based on exon skipping are aimed at mediating the elimination of mutated exons and restoring the reading frame of the affected protein. We explored the capability of polypurine reverse-Hoogsteen hairpins (PPRHs) to cause exon skipping in NB6 cells carrying a duplication of exon 2 of the DHFR gene that causes a frameshift abolishing DHFR activity. Methods: Different editing PPRHs were designed and transfected in NB6 cells followed by incubation in a DHFR-selective medium lacking hypoxanthine and thymidine. Surviving colonies were analyzed by DNA sequencing, RT-PCR, Western blotting and DHFR enzymatic activity. Results: Transfection of editing PPRHs originated colonies in the DHFR-selective medium. DNA sequencing results proved that the DHFR sequence in all these colonies corresponded to the wildtype sequence with just one copy of exon 2. In the edited colonies, the skipping of the additional exon was confirmed at the mRNA level, the DHFR protein was restored, and it showed high levels of DHFR activity. Conclusions: Editing-PPRHs are able to cause exon skipping at the DNA level and could be applied as a possible therapeutic tool for rare diseases.


2000 ◽  
Vol 118 (4) ◽  
pp. A1469
Author(s):  
Dirk Michels ◽  
Christian I. Haberkorn ◽  
Burkhard Arndt ◽  
Michael P. Manns

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 698-698 ◽  
Author(s):  
Y. Tomitaka ◽  
T. Usugi ◽  
R. Kozuka ◽  
S. Tsuda

In 2009, some commercially grown tomato (Solanum lycopersicum) plants in Chiba Prefecture, Japan, exhibited mosaic symptoms. Ten plants from a total of about 72,000 cultivated plants in the greenhouses showed such symptoms. To identify the causal agent, sap from leaves of the diseased plants was inoculated into Chenopodium quinoa and Nicotiana benthamiana plants. Local necrotic lesions appeared on inoculated leaves of C. quinoa, but no systemic infection was observed. Systemic mosaic symptoms were observed on the N. benthamiana plants inoculated. Single local lesion isolation was performed three times using C. quinoa to obtain a reference isolate for further characterization. N. benthamiana was used for propagation of the isolate. Sap from infected leaves of N. benthamiana was mechanically inoculated into three individual S. lycopersicum cv. Momotaro. Symptoms appearing on inoculated tomatoes were indistinguishable from those of diseased tomato plants found initially in the greenhouse. Flexuous, filamentous particles, ~750 nm long, were observed by electron microscopy in the sap of the tomato plants inoculated with the isolate, indicating that the infecting virus may belong to the family Potyviridae. To determine genomic sequence of the virus, RT-PCR was performed. Total RNA was extracted from the tomato leaves experimentally infected with the isolate using an RNeasy Plant Mini kit (QIAGEN, Hilden, Germany). RT-PCR was performed by using a set of universal, degenerate primers for Potyviruses as previously reported (2). Amplicons (~1,500 bp) generated by RT-PCR were extracted from the gels using the QIAquick Gel Extraction kit (QIAGEN) and cloned into pCR-BluntII TOPO (Invitrogen, San Diego, CA). DNA sequences of three individual clones were determined using a combination of plasmid and virus-specific primers, showing that identity among three clones was 99.8%. A consensus nucleotide sequence of the isolate was deposited in GenBank (AB823816). BLASTn analysis of the nucleotide sequence determined showed 99% identity with a partial sequence in the NIb/coat protein (CP) region of Colombian datura virus (CDV) tobacco isolate (JQ801448). Comparison of the amino acid sequence predicted for the CP with previously reported sequences for CDV (AY621656, AJ237923, EU571230, AM113759, AM113754, and AM113761) showed 97 to 100% identity range. Subsequently, CDV infection in both the original and experimentally inoculated plants was confirmed by RT-PCR using CDV-specific primers (CDVv and CDVvc; [1]), and, hence, the causal agent of the tomato disease observed in greenhouse tomatoes was proved to be CDV. The first case of CDV on tomato was reported in Netherlands (3), indicating that CDV was transmitted by aphids from CDV-infected Brugmansia plants cultivated in the same greenhouse. We carefully investigated whether Brugmansia plants naturally grew around the greenhouses, but we could not find them inside or in proximity to the greenhouses. Therefore, sources of CDV inoculum in Japan are still unclear. This is the first report of a mosaic disease caused by CDV on commercially cultivated S. lycopersicum in Japan. References: (1) D. O. Chellemi et al. Plant Dis. 95:755, 2011. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) J. Th. J. Verhoeven et al. Eur. J. Plant. Pathol. 102:895, 1996.


1995 ◽  
Vol 269 (3) ◽  
pp. F449-F457 ◽  
Author(s):  
L. H. Chow ◽  
S. Subramanian ◽  
G. J. Nuovo ◽  
F. Miller ◽  
E. P. Nord

Three subtypes of endothelin (ET) receptors have been identified by cDNA cloning, namely ET-RA, ET-RB, and ET-RC. In the current study the precise cellular distribution of the ET receptor subtypes in the renal medulla was explored by detecting the corresponding polymerase chain reaction (PCR)-amplified cDNAs by in situ reverse transcription (RT)-PCR. The PCR-amplified cDNAs were detected either by direct incorporation using digoxigenin-dUTP (dig-dUTP) as a nucleotide substrate in the PCR reaction or by in situ hybridization with the dig-dUTP-labeled probe. ET-RB mRNA was detected exclusively in the epithelial cells of the inner and outer medullary collecting duct. In contrast, ET-RA message was observed primarily in interstitial cells and pericytes of the vasae rectae in the outer and inner medulla. Southern blot analysis of PCR-amplified cDNAs reverse transcribed from extracted RNA of rat renal medulla confirmed the specificity of the RT-PCR products. ET-RC mRNA was not detected. We conclude that ET-RB is the major ET receptor found in rat renal medulla and is expressed exclusively on inner medullary collecting duct cells. The pattern of ET receptor mRNA expression described suggests different physiological actions for ET on the diverse cellular structures of the renal medulla.


Biologia ◽  
2010 ◽  
Vol 65 (1) ◽  
Author(s):  
Lijie Ren ◽  
Xiaosong Gu ◽  
Yan Liu ◽  
Fei Ding ◽  
Xingxing Gu ◽  
...  

AbstractVisinin-like protein 1 (VILIP-1), a myristoylated calcium sensor protein of the EF-hand Ca2+-binding protein superfamily, plays multiple physiological roles in the central nervous system and peripheral organs. In present study, the cDNA encoding VILIP-1 was identified from the brain and spinal cord cDNA library of Gekko japonicus. It contains a 573 bp open reading frame corresponding to a deduced protein of 191 amino acids. Gecko VILIP-1 shares more than 95.3% identity with vertebrate VILIP-1 proteins, and structurally consists of conserved four EF-hand Ca2+-binding motifs and one dsRNA-binding domain, suggesting that selective pressure must have been extremely high for the conservation of VILIP-1 during vertebrate evolution. Northern blot and RT-PCR showed that gecko VILIP-1 was ubiquitously expressed in all tissues examined. In situ hybridization revealed that the VILIP-1 transcript mainly appeared in the gray matter of the spinal cord, with less distribution in the white matter. Semiquantitative RT-PCR also showed that VILIP-1 expression in spinal cord after tail amputation remained stable at 1 day and 1 week, but decreased at 2 weeks, a time coinciding with regeneration bud formation. This suggests that VILIP-1 may function as a regeneration-associated factor in the form of a monomer or/and RNA-binding complex.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 331-340
Author(s):  
WE Kaminski ◽  
E Jendraschak ◽  
K Baumann ◽  
R Kiefl ◽  
S Fischer ◽  
...  

Lipoxygenases (LXs) catalyze formation of leukotrienes and hydroxy-eicosatetraenoic acids (HETEs), proinflammatory, and spasmogenic autacoids that are critical for host defense systems. We studied the expression and regulation of LX genes (12-LX, 5-LX, and 15-LX) and the 5-lipoxygenase activating protein (FLAP) in human mononuclear cells (MNC) and granulocytes using a quantitative reverse transcription polymerase chain reaction (RT-PCR) technique. We show that 12-LX mRNA is constitutively expressed in resting platelet-free MNC. 12-LX gene expression was upregulated by activation with lipopolysaccharide (LPS). The formation of 12-HETE was inducible with ionophore in MNC, as assessed by high-performance liquid chromatography (HPLC) and gas chromatography, and increased after LPS pretreatment. In addition to 12- LX, resting MNC expressed the genes for 5-LX and FLAP constitutively. Quantitative time course analyses of 12-LX, 5-LX, and FLAP gene expression suggested coregulation of 12-LX and FLAP mRNAs, and reciprocal regulation of 5-LX and FLAP mRNAs. During cell stimulation with LPS 5-LX mRNA levels remained unchanged, whereas FLAP gene expression increased. No 15-LX mRNA expression or 15-HETE formation was detectable in unstimulated and activated MNC. In contrast to MNC, quantitative RT-PCR mRNA analysis showed intermittent intraindividual expression of the 5-LX and FLAP genes in resting granulocytes. mRNAs for 12-LX and 15-LX were not expressed. On stimulation of granulocytes ex vivo, mRNA expression of 5-LX and FLAP was upregulated. Stimulation by LPS differed from that by ionophore A23187. Neither LPS nor ionophore induced gene expression of 12-LX or 15-LX in granulocytes. Our data indicate that resting human MNC and granulocytes express LX and FLAP genes in a cell-specific manner. Cell activation induces coordinated upregulation of 12-LX and FLAP genes in MNC, and 5-LX and FLAP genes in granulocytes, respectively. The constitutive expression of 12-LX mRNA, its upregulation on cell activation, and the formation of 12-HETE clearly indicate the presence of a functional 12-LX in human MNC.


1998 ◽  
Vol 9 (8) ◽  
pp. 1456-1463
Author(s):  
M M Almanzar ◽  
K S Frazier ◽  
P H Dube ◽  
A I Piqueras ◽  
W K Jones ◽  
...  

Osteogenic protein-1 (OP-1) is a morphogenetic factor highly expressed in the kidney and involved in tissue repair and development. Homozygous OP-1-deficient mice die shortly after birth due mainly to arrest of renal growth and differentiation. Because postischemic injury involves several repair mechanisms, this study examined whether kidney OP-1 mRNA expression is modulated after ischemia. Acute ischemic renal injury was achieved in rats by unilateral clamping of the renal pedicle followed by reperfusion. Rats were killed at 3, 6, 12, 24, and 48 h and 7 d after reperfusion, and kidneys were microdissected and analyzed by histology and Northern and Western blots. Changes in OP-1 mRNA were determined by measuring the ratio of OP-1/glyceraldehyde 3-phosphate dehydrogenase signals for each OP-1 transcript (4.0 and 2.4 kb) from ischemic, opposite, and sham-operated rats. The OP-1 mRNA content for transcript 4.0 kb was fivefold lower in the whole ischemic kidney compared with that in sham animals 24 h after reperfusion. In the ischemic medulla, OP-1 mRNA was strikingly downregulated 20-fold when compared with the ischemic cortex. Results for transcript 2.4 kb and for the other time points were comparable. OP-1 mRNA expression was also affected in the opposite medulla compared with the sham medulla. However, only in the ischemic medulla was the relative OP-1 content significantly lower at all time points. Similar results were obtained when analyzing OP-1 protein by Western blot at 24 h after reperfusion. Seven days after reperfusion, the levels of OP-1 mRNA returned to baseline. In conclusion, kidney OP-1 mRNA and protein are selectively downregulated in the medulla after acute ischemic renal injury. OP-1 modulation may be a key element for kidney repair.


Sign in / Sign up

Export Citation Format

Share Document