scholarly journals Bioaccumulation of heavy metals and As in maize (Zea mays L) grown close to mine tailings strongly impacts plant development

Author(s):  
ESTHER AURORA RUIZ HUERTA ◽  
Maria Aurora Armienta Hernández ◽  
Joseph G. Dubrovsky ◽  
Juan Miguel Gómez Bernal

Abstract Potentially toxic metals and metalloids present in mining residues can affect ecosystems, particularly plant growth and development. In this study we evaluated As and heavy metal (Fe, Zn, Cu, Cd, Pb) contents in maize (Zea mays L) plants grown in soils collected near (40 m), at intermediate (400 m) and remote (3000 m) distances from mine tailings near Taxco City, Mexico. Soils sampled near and at intermediate sites from the tailings contained high levels of heavy metals which were 3- to 55-fold higher compared to the control samples. The heavy metal and As content in plants reflected the soil contamination being the greatest for most studied elements in root samples followed by stems, leaves, and kernels. Though plants were capable of completing their life cycle and producing the seeds, high bioaccumulation levels had a strong impact on plant development. Abnormalities in the organs like malformations in reproductive structures (tassel and ear), reduction in the phytomer number and the plant height were present. Microscopic studies and morphometric analyses suggest that strongly affected plant growth result from negative and synergistic action of heavy metals and As in soils on cell growth and cell production. This study showed that maize grown near mine tailings accumulates high levels of heavy metals and As which decrease significantly plant yield and could be dangerous if consumed by animals and humans.

2021 ◽  
Vol 16 (AAEBSSD) ◽  
pp. 77-85
Author(s):  
Sridevi Tallapragada ◽  
Rajesh Lather ◽  
Vandana ◽  
Gurnam Singh

Phytoremediation is the plant-based technology that has emerged as a novel cost effective and ecofriendly technology in which green plants are used for extraction, sequestration and/or detoxification of the pollutants. Plants possess the natural ability to degrade heavy metals and this property of plants to detoxify contaminants can be used by genetic engineering approach. Currently, the quality of soil and water has degraded considerably due heavy metal accumulation through discharge of industrial, agricultural and domestic waste. Heavy metal pollution is a global concern and a major health threat worldwide. They are toxic, and can damage living organisms even at low concentrations and tend to accumulate in the food chain. The most common heavy metal contaminants are: As, Cd, Cr, Cu, Hg, Pb and Zn. High levels of metals in soil can be phytotoxic, leading to poor plant growth and soil cover due to metal toxicity and can lead to metal mobilization in runoff water and thus have a negative impact on the whole ecosystem. Phytoremediation is a green strategy that uses hyperaccumulator plants and their rhizospheric micro-organisms to stabilize, transfer or degrade pollutants in soil, water and environment. Mechanisms used to remediate contaminated soil includes phytoextraction, phytostabilization, phytotransformation, phytostimulation, phytovolatilization and rhizofiltration. Traditional phytoremediation method presents some limitations regarding their applications at large scale, so the application of genetic engineering approaches such as transgenic transformation, nanoparticles addition and phytoremediation assisted with phytohormones, plant growth-promoting bacteria and Arbuscular mycorrhizal fungi (AMF) inoculation has been applied to ameliorate the efficacy of plants for heavy metals decontamination. In this review, some recent innovative technologies for improving phytoremediation and heavy metals toxicity and their depollution procedures are highlighted.


2019 ◽  
Vol 5 ◽  
pp. 1
Author(s):  
Manish Batham ◽  
Jot Sharma ◽  
◽  

The contamination of soil by anthropogenic activities is of great concern in recent times. There is an urgent demand of reliable and eco-friendly approaches for remediation of this concern. The current techniques for heavy metal remediation from contaminated soil are costly, time consuming, and harmful for the environment. Toxicity of heavy metals can reduce plant growth, and a high level of presence of these heavy metals is a risk factor to human and plant health. Heavy metals neither biodegradable materials nor are created. They occur naturally in the earth crust, and they reach the environment by human activities. Organic compounds can be degraded, but metals cannot degrade, and therefore effective cleanup requires its immobilization to reduce or remove toxicity. Recently, research focuses on cost-effective technologies to clean polluted areas. Vermiremediation and phytoremediation are two such useful techniques. In these eco-friendly techniques of remediation, the target plants accumulate, volatilize the contaminants, or convert them into some nontoxic forms, thus remediating the soil.


2020 ◽  
Vol 12 (1) ◽  
pp. 101-112
Author(s):  
José Luis Aguirre-Noyola ◽  
Yaneth Romero Ramírez ◽  
Jesus Carlos Ruvalcaba Ledezma ◽  
Angela Victoria Forero Forero ◽  
Renato León Rodríguez ◽  
...  

Contextualization: Pseudomonas aeruginosa is capable of producing biosurfactants which have many uses in bioremediation and the production of antiviral, antibacterial, antiparasitic, sporicidal and antifungal agents, among others.   Knowledge gap: This study describes the production of mono and di-rhamnolipid biosurfactants by P. aeruginosa strains isolated from Zea mays rhizosphere and composts in the state of Guerrero, Mexico.  Purpose: The overall aims were to investigate biosurfactant, pyocyanin production, and tolerance to heavy metals and antimicrobial activity capacity than biosurfactants produced from P. aeruginosa strains from corn rhizosphere and compost in Mexico. Methodology: Biosurfactant production was determined based hemolysis on blood agar, blue halos in CTAB-Methylene blue agar, drop collapse test and production of foam on PPGAS broth, the emulsion index (IE24) and antibacterial capacity. The strains were identified by sequence of the 16S rDNA gene and their resistance to heavy metals were also evaluated. Results and conclusions: Two strains isolated from Zea mays rhizosphere (PAM8, PAM9) were the best biosurfactant producers and their extracts showed antimicrobial activity against Grampositive and Gramnegative bacteria. PAM8 and PAM9 showed >30% of cellular hydrophobicity to hydrocarbons, and were capable of emulsifying toluene, cyclohexane, petroleum, diesel and oils. All strains showed the same profile of heavy metal tolerance (As5+ >As3+ >Zn2+ >Pb2+ >Fe3+ >Cd2+ >Cu2+ >Cr6+ in concentrations of 20, 10, 10, 6, 4, 4, 2 and 2 mM., respectively). The isolation of biosurfactant-producing and heavy-metal tolerant bacteria from Zea mays rhizosphere and compost in Guerrero demonstrates the capacity for this region to harbor potentially important microbial strains for industrial or bioremediation applications.


2017 ◽  
Vol 76 (7) ◽  
pp. 1867-1874 ◽  
Author(s):  
Xu Zhang ◽  
Huanhuan Yang ◽  
Zhaojie Cui

The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn > Pb > Fe > Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.


2011 ◽  
Vol 343-344 ◽  
pp. 1152-1159 ◽  
Author(s):  
Deng Gao Fu ◽  
Chun Jing Song ◽  
Chang Qun Duan ◽  
Cheng Tao Liu ◽  
Li Na Liu

The effects of low non-lethal levels of heavy metals (Pb and Cd) on biomass allocation, relationship between vegetative biomass and reproductive biomass, and heavy metal distributions in plant were investigated for three varieties of maize (Zea mays L.). Results showed that significant two-way interactions between variety and heavy-metal application were the main source of variation of biomass allocation. Different levels of Pb and Cd applications did not cause relatively more biomass to be allocated reproductive biomass in three varieties, indicating that heavy-metal applications did not change the reproductive allometry. Although the concentrations of Pb and Cd in grains were lower than other organs, Pb and Cd concentrations of grains under higher heavy-metal treatments exceeded the national guidance limit for three varieties of maize, suggesting heavy metal pollution may pose risks to human health.


2021 ◽  
Vol 22 (2) ◽  
pp. 1-9
Author(s):  
Maureen Ixchel Ramos Hernández ◽  
María de la Luz Pérez Rea

This work presents the physical-chemical, geotechnical and mechanical characterization of a sample of mine tailings from the state of Zacatecas, Mexico with the objective of evaluating their possible use as a construction material for pavement support layers or as an aggregate of a hydraulic concrete. The material analyzed was classified as a poorly graded silty sand (SP-SM) according to the SUCS classification and is composed mainly of quartz and calcite. The analyzed sample satisfies the necessary requirements, according to current Mexican regulations, to be used as i) a subgrade layer in a pavement, without the addition of virgin aggregates, or ii) as fine aggregates in the production of hydraulic concrete, previously sieved to correct its grain-size distribution. The mining residues studied do not require stabilization because the material transported in the leaching process is below the permissible limits for heavy metals according to Mexican regulations; this may be caused by the neutral pH of the sample, demonstrating a high adsorption of the heavy metals that avoids potential leaching. However, the sample was stabilized with Portland cement with 3 and 5% respectively to corroborate the decrease in heavy metal transport based on the consulted bibliography; the concentrations of the analyzed elements decreased except for chrome due to its presence in the stabilizing material and an increase in the pH value was observed.


Author(s):  
I. M. Onyejekwe ◽  
L. C. Osuji ◽  
E. O. Nwaichi

This study assessed and modelled the accumulation of heavy metals in the seeds of Zea mays L. (maize) planted in a crude oil impacted soil. A total of thirteen soil samples were randomly collected. Five samples each were obtained from plot A (PA)and plot B (PB); the crude oil impacted plots. Three samples were obtained from plot C (PC); the control plot which was about 200 m away from the spill impacted area. All samples were analysed for Total Petroleum Hydrocarbon (TPH) and Heavy Metals [iron (Fe), lead (Pb), zinc (Zn), chromium (Cr) and vanadium (V)]. Maize was planted on each of the thirteen plots and the seeds upon harvest was analysed for heavy metals (Fe, Pb, Zn, Cr and V). The seed accumulation factors for each heavy metal was modelled using TPH as the independent variable. Aside the Zn regression model with R2 value of 0.399, other models performed well with R2 values of 0.994, 0.942, 0.974 and 0.964 for Fe, Pb, Cr and V respectively. TPH was able to model the seed parameters with relatively high model performance except for Zinc. This suggests that accumulation of some heavy metals in the seed of the Zea mays L. planted is dependent on TPH. These models can be useful in predicting accumulation of heavy metals in the seeds of Maize planted in a crude oil polluted soil.


2015 ◽  
Vol 67 (2) ◽  
pp. 385-396 ◽  
Author(s):  
Shufen Li ◽  
Guojun Zhang ◽  
Wujun Gao ◽  
Xingpeng Zhao ◽  
Chuanliang Deng ◽  
...  

The effects of exposure to heavy metals, copper (Cu) and lead (Pb) in the soil, separately and in combination, were examined in Safflower (Carthamus tinctorius L.). Plant growth and development, GSH level and GSH2 expression at seedling, branching, and flowering stages were studied. Cu at lower concentrations had a stimulating effect on seedling height and root length. A significant positive correlation was observed between heavy metal concentrations and inhibition of plant growth. Plant height, root length and lateral root numbers decreased progressively with increasing concentrations of Cu and Pb. Except at the seedling stage, the metal mixture elicited a synergistic effect on safflower growth and development. The GSH content was significantly reduced in both safflower roots and leaves at increased concentrations of heavy metals, with the exception of the treatment with a low concentration of Cu that resulted in a slightl increase in GSH content at the seedling and branching stages. RT-PCR analysis revealed a negative correlation between GSH2 expression levels and metal concentration. Short exposure to low concentrations of Cu induce an increase in GSH synthesis to preserve normal plant growth, whereas prolonged exposure and large Cu and Pb concentrations affect the GSH metabolic chain, and are severely toxicity. The findings obtained in this study enhance our understanding of the role of the GSH pool in the response of plants to heavy metal-induced stress, and serve as a basis for improved cultivation of safflower.


2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Canhong Gao ◽  
Kun Gao ◽  
Huixian Yang ◽  
Tangdan Ju ◽  
Jingyi Zhu ◽  
...  

Abstract Background Maize (Zea mays L.) is a widely cultivated cereal and has been used as an optimum heavy metal phytoremediation crop. Metallothionein (MT) proteins are small, cysteine-rich, proteins that play important roles in plant growth and development, and the regulation of stress response to heavy metals. However, the MT genes for maize have not been fully analyzed so far. Methods The putative ZmMT genes were identified by HMMER.The heat map of ZmMT genes spatial expression analysis was generated by using R with the log2 (FPKM + 1).The expression profiles of ZmMT genes under three kinds of heavy metal stresses were quantified by using qRT-PCR. The metallothionein proteins was aligned using MAFFT and phylogenetic analysis were constructed by ClustalX 2.1. The protein theoretical molecular weight and pI, subcellular localization, TFs binding sites, were predicted using ProtParam, PSORT, PlantTFDB, respectively. Results A total of 9 ZmMT genes were identified in the whole genome of maize. The results showed that eight of the nine ZmMT proteins contained one highly conserved metallothio_2 domain, while ZmMT4 contained a Metallothio_PEC domain. All the ZmMT proteins could be classified into three major groups and located on five chromosomes. The ZmMT promoters contain a large number of hormone regulatory elements and hormone-related transcription factor binding sites. The ZmMT genes exhibited spatiotemporal specific expression patterns in 23 tissues of maize development stages and showed the different expression patterns in response to Cu, Cd, and Pb heavy metal stresses. Conclusions We identified the 9 ZmMT genes, and explored their conserved motif, tissue expression patterns, evolutionary relationship. The expression profiles of ZmMT genes under three kinds of heavy metal stresses (Cu, Cd, Pb) were analyzed. In summary, the expression of ZmMTs have poteintial to be regulated by hormones. The specific expression of ZmMTs in different tissues of maize and the response to different heavy metal stresses are revealed that the role of MT in plant growth and development, and stress resistance to heavy metals.


Author(s):  
Mohammad Kazem Souri ◽  
Mansoure Hatamian ◽  
Tsehaye Tesfamariam

Abstract Background Contamination of vegetable crops with heavy metals is a great threat to human health. On the other hand, monitoring plant tissue content of heavy metals at different growth stages could have important implications. In this study, shoot and root samples of garden cress and sweet basil were collected from five farms, from heavy metal polluted fields located in Shahre Rey, south of Tehran, Iran, in either young (3 weeks old) or mature (7 weeks old) plants. The concentrations of cadmium (Cd), lead (Pb), nickel (Ni), arsenic (As), chromium (Cr), cobalt (Co), copper (Cu), manganese (Mn) and zinc (Zn) in plant tissues were determined using atomic absorption spectroscopy. In another study, 2 weeks (young) or 6 weeks old (mature) plants of garden cress were subjected to three concentrations of Cd and Pb (0, 5, 10 mg L−1) under hydroponic sand culture for 5 days, in which Hoagland formula was used for nutrient solution preparation. Results The results showed that root concentration of various heavy metals, particularly Cd, As, Ni, Co, Cu, Mn and Zn but not Pb were significantly higher than their shoot concentration in either crop under field sampling. The leaf concentration of some heavy metals was significantly different in seedling and older (mature) plant samples of either crop. Young plant leaves of sweet basil had significantly less Cd, Pb, As and higher Cu than mature plants, whereas young garden cress plants had similar Cd, Pb and higher As and Zn concentrations than mature plants. The Cr, Co, Mn and Zn concentrations were similar in young and mature plants of sweet basil. The Mn, Co, Cr and Ni concentration of young and mature plants of either crop was also similar. The result of hydroponic study showed that young plants of garden cress had higher potential to accumulate lead in shoot and root, particularly in lower (5 mg L−1) than higher (10 mg L−1) lead concentration; however, root Pb concentration at 10 mg L−1 Pb of nutrient solution showed no difference between young and mature plants. Regarding cadmium, young garden cress plants accumulated higher Cd than mature plants in their shoot, particularly under higher Cd levels (10 rather than 5 mg L−1) of nutrient solution; however, a wide difference in root Cd concentration was observed under low (5 mg L−1) than higher (10 mg L−1) cadmium concentration of nutrient solution. Conclusion The results of these two studies indicate that despite that young plants have a higher potential for heavy metal uptake and accumulation, the low difference in young and mature plants in the polluted fields may be due to the longer period of plant growth of mature plants that may increase the risk of exposure to polluted air and dust deposition containing high levels of heavy metals.


Sign in / Sign up

Export Citation Format

Share Document