Environmentally Persistent Free Radical Promotes Lung Cancer Progression Via Regulating The Expression Profile of miRNAs

Author(s):  
Xiaomin Liu ◽  
Binshu Chai ◽  
Xianyi Wang ◽  
Zong Wu ◽  
Heng Zou ◽  
...  

Abstract Environmentally persistent free radicals (EPFRs) are generated in the combustion processes of solid waste and can cause adverse influences on human health, especially lung diseases. Lung cancer is one of the most serious malignancies in recent years, which the global deaths rate is about 1.6 million every year. However, the mechanism of EPFRs on lung cancer is still not clear. In this study, we verified that ZnO/MCB EPFRs promote cell proliferation and migration, impedes cell apoptosis in lung cancer. Furthermore, we found that ZnO/MCB could influence the expression of miRNAs (miR-18a and miR-34a). In vivo, ZnO/MCB and ZnO EPFRs can reduce the weight and survival rate of BALB/c male mice more than that of BALB/c female mice. In the ZnO/MCB exposed group, male mice lung became even smaller, while the female mice the lung increased significantly. Taken together, our results provide evidence for assessing the potential health risks of persistent free radicals on fine particles. In conclusion, this study linked toxicity of EPFRs with miRNAs revealed the potential health hazard to human lung cancer.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
David Brunn ◽  
Kati Turkowski ◽  
Stefan Günther ◽  
Andreas Weigert ◽  
Thomas Muley ◽  
...  

Transcription factors can serve as links between tumor microenvironment signaling and oncogenesis. Interferon regulatory factor 9 (IRF9) is recruited and expressed upon interferon stimulation and is dependent on cofactors that exert in tumor-suppressing or oncogenic functions via the JAK-STAT pathway. IRF9 is frequently overexpressed in human lung cancer and is associated with decreased patient survival; however, the underlying mechanisms remain to be elucidated. Here, we used stably transduced lung adenocarcinoma cell lines (A549 and A427) to overexpress or knockdown IRF9. Overexpression led to increased oncogenic behavior in vitro, including enhanced proliferation and migration, whereas knockdown reduced these effects. These findings were confirmed in vivo using lung tumor xenografts in nude mice, and effects on both tumor growth and tumor mass were observed. Using RNA sequencing, we identified versican (VCAN) as a novel downstream target of IRF9. Indeed, IRF9 and VCAN expression levels were found to be correlated. We showed for the first time that IRF9 binds at a newly identified response element in the promoter region of VCAN to regulate its transcription. Using an siRNA approach, VCAN was found to enable the oncogenic properties (proliferation and migration) of IRF9 transduced cells, perhaps with CDKN1A involvement. The targeted inhibition of IRF9 in lung cancer could therefore be used as a new treatment option without multimodal interference in microenvironment JAK-STAT signaling.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 465 ◽  
Author(s):  
Young Eun Choi ◽  
Hamadi Madhi ◽  
HaEun Kim ◽  
Jeon-Soo Lee ◽  
Myung-Hee Kim ◽  
...  

Although family with sequence similarity 188 member B (FAM188B) is known to be a member of a novel putative deubiquitinase family, its biological role has not been fully elucidated. Here, we demonstrate the oncogenic function of FAM188B via regulation of forkhead box M1 (FOXM1), another oncogenic transcription factor, in lung cancer cells. FAM188B knockdown induced the inhibition of cell growth along with the downregulation of mRNA and protein levels of FOXM1. FAM188B knockdown also resulted in downregulation of Survivin and cell cycle-related proteins, which are direct targets of FOXM1. Interestingly, FOXM1 co-immunoprecipitated with FAM188B, and the levels of FOXM1 ubiquitination increased with FAM188B knockdown but decreased with FAM188B overexpression. In addition, in vivo xenograft of FAM188B siRNA (siFAM188B) RNA-treated cells resulted in the retardation of tumor growth compared with that in the control. Furthermore, protein levels of FAM188B and FOXM1 were elevated in the human lung cancer tissues, and FAM188B expression was negatively correlated with the overall survival of lung cancer patients. These results indicate that FAM188B exerts its oncogenic effects by regulating FOXM1 deubiquitination and thus its stability. Therefore, FAM188B might be a potential therapeutic target to control lung cancer progression.


2018 ◽  
Vol 115 (17) ◽  
pp. E3978-E3986 ◽  
Author(s):  
Qibiao Wu ◽  
Yahui Tian ◽  
Jian Zhang ◽  
Xinyuan Tong ◽  
Hsinyi Huang ◽  
...  

Lung cancer is the leading cause of cancer-related death worldwide. Inactivation of tumor suppressor genes (TSGs) promotes lung cancer malignant progression. Here, we take advantage of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated somatic gene knockout in aKrasG12D/+mouse model to identify bona fide TSGs. From individual knockout of 55 potential TSGs, we identify five genes, includingUtx,Ptip,Acp5,Acacb, andClu, whose knockout significantly promotes lung tumorigenesis. These candidate genes are frequently down-regulated in human lung cancer specimens and significantly associated with survival in patients with lung cancer. Through crossing the conditionalUtxknockout allele to theKrasG12D/+mouse model, we further find thatUtxdeletion dramatically promotes lung cancer progression. The tumor-promotive effect ofUtxknockout in vivo is mainly mediated through an increase of the EZH2 level, which up-regulates the H3K27me3 level. Moreover, theUtx-knockout lung tumors are preferentially sensitive to EZH2 inhibitor treatment. Collectively, our study provides a systematic screening of TSGs in vivo and identifies UTX as an important epigenetic regulator in lung tumorigenesis.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2021 ◽  
Author(s):  
Beatrice Parma ◽  
Vignesh Ramesh ◽  
Paradesi Naidu Gollavilli ◽  
Aarif Siddiqui ◽  
Luisa Pinna ◽  
...  

ABSTRACTThe identification of novel targets is of paramount importance to develop more effective drugs and improve the treatment of non-small cell lung cancer (NSCLC), the leading cause of cancer-related deaths worldwide. Since cells alter their metabolic rewiring during tumorigenesis and along cancer progression, targeting key metabolic players and metabolism-associated proteins represents a valuable approach with a high therapeutic potential. Metabolic fitness relies on the functionality of heat shock proteins (HSPs), molecular chaperones that facilitate the correct folding of metabolism enzymes and their assembly in macromolecular structures. Here, we show HSPD1 (HSP60) as a survival gene ubiquitously expressed in NSCLC and associated with poor patients’ prognosis. HSPD1 knockdown or its chemical disruption by the small molecule KHS101 induces a drastic breakdown of oxidative phosphorylation, and suppresses cell proliferation both in vitro and in vivo. By combining drug profiling with transcriptomics and through a whole-genome CRISPR/Cas9 screen, we demonstrate that HSPD1-targeted anti-cancer effects are dependent on OXPHOS and validated molecular determinants of KHS101 sensitivity, in particular, the creatine-transporter SLC6A8 and the subunit of the cytochrome c oxidase complex COX5B. These results highlight mitochondrial metabolism as an attractive target and HSPD1 as a potential theranostic marker for developing therapies to combat NCSLC.SignificanceHSPD1 elimination or disruption interferes with NSCLC metabolic activity causing a strong OXPHOS-dependent energetic breakdown, which the cancer cells fail to overcome, highlighting HSPD1 as a potential theranostic marker for improving lung cancer therapy.


2002 ◽  
Vol 282 (1) ◽  
pp. R281-R288 ◽  
Author(s):  
Sven Karlsson ◽  
Anton J. W. Scheurink ◽  
Bo Ahrén

A gender difference in the glucagon response to insulin-induced hypoglycemia was previously demonstrated in humans. Whether this reflects a gender difference in autonomic activation or in pancreatic α-cell regulation is not known. We investigated the glucagon, epinephrine, and norepinephrine responses to neuroglycopenic stress induced by 2-deoxy-d-glucose (2-DG) or insulin in female and male mice. 2-DG increased plasma glucagon levels by 559 ± 68% in females versus 281 ± 46% in males ( P< 0.01). Plasma levels of epinephrine or norepinephrine after 2-DG administration did not differ between genders. During insulin-induced hypoglycemia, the glucagon response was similarly higher in females ( P < 0.001), whereas the plasma catecholamine response was higher in males ( P < 0.05). In vivo, the glucagon response to carbachol or clonidine was higher in females ( P < 0.05). In isolated islets, the glucagon response to carbachol (100 μM; P = 0.003) but not to clonidine (1 μM) was larger in females. We conclude that in addition to a larger α-cell mass (previously described in female mice), an increased sensitivity of the glucagon-producing α-cell to cholinergic activation contributes to the larger glucagon response to glucopenic stress in female mice.


Gene Therapy ◽  
2019 ◽  
Vol 27 (1-2) ◽  
pp. 51-61
Author(s):  
Juliana G. Xande ◽  
Ana P. Dias ◽  
Rodrigo E. Tamura ◽  
Mario C. Cruz ◽  
Bárbara Brito ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Gaozhong Sun ◽  
Kewei Ni

Objective. The purpose of this study was to describe the role of Cavin3 in the progression of lung cancer and its underlying mechanism. Methods. Totally, 200 cases of lung cancer tissues and corresponding paracancer tissues were collected. Cavin3 expression in samples was determined by qRT-PCR, and the correlation with lung cancer stages as well as prognosis was statistically analyzed combined with matched clinical information. To investigate the mechanism of Cavin3 in lung cancer progression, firstly, Cavin3 was detected in lung cancer cell lines A549, PC9, and H520. Then, cells with stable Cavin3 overexpression and Cavin3 knockout were established to determine the effect of Cavin3 overexpression on the mammalian target of rapamycin (mTOR) signaling pathway. Subsequently, cells were harvested for cell proliferation, migration, and invasion assays in vitro, as well as nude mouse transplantation tumor experiment in vivo. Results. Cavin3 was seen to be highly expressed in cancer tissues. Statistical analysis with matched clinical data showed that Cavin3 as a prognostic indicator of lung cancer had important clinical value. In addition, it could be found that high expression of Cavin3 was able to promote cell proliferation, migration, and invasion and also potentiate tumor formation in vivo. Conclusion. Cavin3 was highly expressed in lung cancer, and it was capable to promote cell proliferation, invasion, and migration.


Sign in / Sign up

Export Citation Format

Share Document