scholarly journals Inhibition of FOXO1-Mediated Autophagy Promotes Paclitaxel-Induced Apoptosis in MDA-MB-231 Cell Lines

Author(s):  
Kaixiang Xu ◽  
Wanyun Zhu ◽  
Anyong Xu ◽  
Zhe Xiong ◽  
Heng Zhao ◽  
...  

Abstract Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancers and often produces resistance to paclitaxel (PTX) therapy. Autophagy plays an important cytoprotective role in PTX-induced tumor cell death and targeting autophagy is promising to improve the efficacy of tumor chemotherapy in recent years. Here, we reported that PTX induced both apoptosis and autophagy of MDA-MB-231 cells, and inhibition of autophagy enable to promote apoptotic cell death. Furthermore, we found that FOXO1 enhanced PTX-induced autophagy by a transcriptional activation pattern in MDA-MB-231 cells, which was associated with its downstream target genes ATG5, VPS34, BECN1 and MAP1LC3B. The knockdown of FOXO1 attenuated the survival of MDA-MB-231 cells under the PTX treatment. These findings will be beneficial to improve the treatment efficacy of PTX and to develop the autophagic target therapy of TNBC.

2021 ◽  
Vol 22 (6) ◽  
pp. 3087
Author(s):  
Jang Hyun Choi ◽  
Haram Lee ◽  
Hangil Lee ◽  
Hansol Lee

Despite advances in the preparation of metal oxide (MO) nanoparticles (NPs) as catalysts for various applications, concerns about the biosafety of these particles remain. In this study, we prepared transition metal-doped cerium oxide (TM@CeO2; TM = Cr, Mn, Fe, Co, or Ni) nanoparticles and investigated the mechanism underlying dopant-dependent toxicity in HaCaT human keratinocytes. We show that doping with Cr or Co but not Fe, Mn, or Ni increased the toxicity of CeO2 NPs in dose- and time-dependent manners and led to apoptotic cell death. Interestingly, while both undoped and transition metal-doped NPs increased intracellular reactive oxygen species (ROS), toxic Cr@CeO2 and Co@CeO2 NPs failed to induce the expression of NRF2 (nuclear factor erythroid 2-related factor 2) as well as its downstream target genes involved in the antioxidant defense system. Moreover, activation of NRF2 transcription was correlated with dynamic changes in H3K4me3 and H3K27me3 at the promoter of NRF2, which was not observed in cells exposed to Cr@CeO2 NPs. Furthermore, exposure to relatively non-toxic Fe@CeO2 NPs, but not the toxic Cr@CeO2 NPs, resulted in increased binding of MLL1 complex, a major histone lysine methylase mediating trimethylation of histone H3 lysine 4, at the NRF2 promoter. Taken together, our findings strongly suggest that failure of cells to respond to oxidative stress is critical for dopant-dependent toxicity of CeO2 NPs and emphasize that careful evaluation of newly developed NPs should be preceded before industrial or biomedical applications.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kehan Li ◽  
Cunte Chen ◽  
Rili Gao ◽  
Xibao Yu ◽  
Youxue Huang ◽  
...  

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of leukemia with poor prognosis, and biomarkers and novel therapeutic targets are urgently needed for this disease. Our previous studies have found that inhibition of the B-cell leukemia/lymphoma 11B (BCL11B) gene could significantly promote the apoptosis and growth retardation of T-ALL cells, but the molecular mechanism underlying this effect remains unclear. This study intends to investigate genes downstream of BCL11B and further explore its function in T-ALL cells. We found that PTK7 was a potential downstream target of BCL11B in T-ALL. Compared with the healthy individuals (HIs), PTK7 was overexpressed in T-ALL cells, and BCL11B expression was positively correlated with PTK7 expression. Importantly, BCL11B knockdown reduced PTK7 expression in T-ALL cells. Similar to the effects of BCL11B silencing, downregulation of PTK7 inhibited cell proliferation and induced apoptosis in Molt-4 cells via up-regulating the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and p27. Altogether, our studies suggest that PTK7 is a potential downstream target of BCL11B, and downregulation of PTK7 expression via inhibition of the BCL11B pathway induces growth retardation and apoptosis in T-ALL cells.


2004 ◽  
Vol 32 (03) ◽  
pp. 377-387 ◽  
Author(s):  
Hyung-Jin Kim ◽  
Seon Il Jang ◽  
Young-Jun Kim ◽  
Hyun-Ock Pae ◽  
Hae-Young Won ◽  
...  

We studied the effect of 4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol (AETD) isolated from Isaria japonica, one of the most popular Chinese fungal medicines, on the induction of apoptosis in rat bladder carcinoma NBT-II cells. AETD was cytotoxic to NBT-II cells, and this cytotoxic effect appears to be attributed to its induction of apoptotic cell death, as AETD induced nuclear morphological changes and internucleosomal DNA fragmentation, and increased the proportion of hypodiploid cells and activity of caspase-3. AETD treatment also decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the pro-apoptotic protein Bax. These results provide important information in understanding the mechanism(s) of AETD-induced apoptosis.


1996 ◽  
Vol 316 (1) ◽  
pp. 25-28 ◽  
Author(s):  
Miriam J. SMYTH ◽  
David K. PERRY ◽  
Jiandi ZHANG ◽  
Guy G. POIRIER ◽  
Yusuf A. HANNUN ◽  
...  

The novel lipid second messenger, ceramide, specifically induced poly(ADP-ribose) polymerase cleavage through activation of the protease prICE. Over-expression of Bcl-2 inhibited ceramide-induced poly(ADP-ribose) polymerase proteolysis and protected cells from ceramide-induced death. These data provide the first insight into the mechanism by which ceramide mediates apoptosis and suggest a mechanism by which Bcl-2 protects from cell death.


1994 ◽  
Vol 345 (1313) ◽  
pp. 269-275 ◽  

Regulation of multicellular architecture involves a dynamic equilibrium between cell proliferation, differentiation with consequent growth arrest, and cell death. Apoptosis is one particular form of active cell death that is extremely rapid and characterized by auto-destruction of chromatin, cellular blebbing and condensation, and vesicularization of internal components. The c- myc proto-oncogene encodes an essential component of the cell’s proliferative machinery and its deregulated expression is implicated in most neoplasms. Intriguingly, c- myc can also act as a potent inducer of apoptosis. Myc-induced apoptosis occurs only in cells deprived of growth factors or forcibly arrested with cytostatic drugs. Myc-induced apoptosis is dependent upon the level at which it is expressed and deletion mapping shows that regions of c-Myc required for apoptosis overlap with regions necessary for co-transformation, autoregulation, inhibition of differentiation, transcriptional activation and sequence-specific DNA binding. Moreover, induction of apoptosis by c-Myc requires association with c-Myc’s heterologous partner, Max. All of this strongly implies that c-Myc drives apoptosis through a transcriptional mechanism: presumably by modulation of target genes. Two simple models can be invoked to explain the induction of apoptosis by c-Myc. One holds that death arises from a conflict in growth signals which is generated by the inappropriate or unscheduled expression of c-Myc under conditions that would normally promote growth arrest. In this ‘Conflict’ model, induction of apoptosis is not a normal function of c-Myc but a pathological manifestation of its deregulation. It thus has significance only for models of carcinogenic progression in which myc genes are invariably disrupted. The other model holds that induction of apoptosis is a normal obligate function of c-Myc which is modulated by specific survival factors. Thus, every cell that enters the cycle invokes an obligate abort suicide pathway which must be continuously suppressed by signals from the immediate cellular environment for the proliferating cell to survive. Evidence will be presented supporting this second ‘Dual Signal’ model for cell growth and survival, and its widespread implications will be discussed.


Development ◽  
1999 ◽  
Vol 126 (1) ◽  
pp. 191-200 ◽  
Author(s):  
S.G. Kramer ◽  
T.M. Jinks ◽  
P. Schedl ◽  
J.P. Gergen

Runt functions as a transcriptional regulator in multiple developmental pathways in Drosophila melanogaster. Recent evidence indicates that Runt represses the transcription of several downstream target genes in the segmentation pathway. Here we demonstrate that runt also functions to activate transcription. The initial expression of the female-specific sex-determining gene Sex-lethal in the blastoderm embryo requires runt activity. Consistent with a role as a direct activator, Runt shows sequence-specific binding to multiple sites in the Sex-lethal early promoter. Using an in vivo transient assay, we demonstrate that Runt's DNA-binding activity is essential for Sex-lethal activation in vivo. These experiments further reveal that increasing the dosage of runt alone is sufficient for triggering the transcriptional activation of Sex-lethal in males. In addition, a Runt fusion protein, containing a heterologous transcriptional activation domain activates Sex-lethal expression, indicating that this regulation is direct and not via repression of other repressors. Moreover, we demonstrate that a small segment of the Sex-lethal early promoter that contains Runt-binding sites mediates Runt-dependent transcriptional activation in vivo.


Acta Naturae ◽  
2012 ◽  
Vol 4 (3) ◽  
pp. 88-94 ◽  
Author(s):  
M. A. Savitskaya ◽  
M. S. Vildanova ◽  
O. P. Kisurina-Evgenieva ◽  
E. A. Smirnova ◽  
G. E. Onischenko

Vitamin E derivatives are known to act as agents exhibiting cytotoxity against tumor cells. The effect of vitamin E succinate on human epidermoid carcinoma cell line A431 was investigated in this study using live imaging, immunocytochemistry, and transmission electron microscopy. -Tocopheryl succinate-induced apoptotic cell death in A431 cells was shown to be both dose- and time-dependent. The hyperproduction of reactive oxygen species, changes in size, shape and ultrastructural characteristics of mitochondria followed by the release of cytochrome c from mitochondria to cytosol were observed. These results suggest that -tocopheryl succinate induces apoptosis that occurs via the mitochondrial pathway. Mitochondria are shown to be crucial targets in -tocopheryl succinate-induced caspase-dependent cell death in human carcinoma A431 cells.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 207 ◽  
Author(s):  
Yi-Yue Wang ◽  
Jun Hyeok Kwak ◽  
Kyung-Tae Lee ◽  
Tsegaye Deyou ◽  
Young Pyo Jang ◽  
...  

The seeds of Millettia ferruginea are used in fishing, pesticides, and folk medicine in Ethiopia. Here, the anti-cancer effects of isoflavones isolated from M. ferruginea were evaluated in human ovarian cancer cells. We found that isoflavone ferrugone and 6,7-dimethoxy-3’,4’-methylenedioxy-8-(3,3-dimethylallyl)isoflavone (DMI) had potent cytotoxic effects on human ovarian cancer cell A2780 and SKOV3. Ferrugone and DMI treatment increased the sub-G1 cell population in a dose-dependent manner in A2780 cells. The cytotoxic activity of ferrugone and DMI was associated with the induction of apoptosis, as shown by an increase in annexin V-positive cells. Z-VAD-fmk, a broad-spectrum caspase inhibitor, and z-DEVD-fmk, a caspase-3 inhibitor, significantly reversed both the ferrugone and DMI-induced apoptosis, suggesting that cell death stimulated by the isoflavones is mediated by caspase-3-dependent apoptosis. Additionally, ferrugone-induced apoptosis was found to be caspase-8-dependent, while DMI-induced apoptosis was caspase-9-dependent. Notably, DMI, but not ferrugone, increased the intracellular levels of reactive oxygen species (ROS), and antioxidant N-acetyl-L-cysteine (NAC) attenuated the pro-apoptotic activity of DMI. These data suggest that DMI induced apoptotic cell death through the intrinsic pathway via ROS production, while ferrugone stimulated the extrinsic pathway in human ovarian cancer cells.


2016 ◽  
Vol 96 (3) ◽  
pp. 347-354 ◽  
Author(s):  
X.W. Dou ◽  
W. Park ◽  
S. Lee ◽  
Q.Z. Zhang ◽  
L.R. Carrasco ◽  
...  

Mandibular torus (MT) is a common intraoral osseous outgrowth located on the lingual surface of the mandible. Histologic features include hyperplastic bone consisting of mature cortical and trabecular bone. Some theories on the etiology of MT have been postulated, such as genetic factors, masticatory hyperfunction, trauma, and continued growth, but the underlying mechanism remains largely unknown. In this study, we investigated the potential role of mesenchymal stem cells (MSCs) derived from human MT in the pathogenesis of bone outgrowth. We demonstrated that MT harbored a distinct subpopulation of MSCs, with enhanced osteogenic and decreased adipogenic differentiation capacities, as compared with their counterparts from normal jaw bone. The increased osteogenic differentiation of mandibular torus MSCs was associated with the suppression of Notch3 signaling and its downstream target genes, Jag1 and Hey1, and a reciprocal increase in the transcriptional activation of ATF4 and NFATc1 genes. Targeted knockdown of Notch3 expression by transient siRNA transfection promoted the expression of osteogenic transcription factors in normal jaw bone MSCs. Our data suggest that the loss of Notch3 signaling may contribute partly to bone outgrowth in MT, as mediated by enhanced MSC-driven osteogenic differentiation in the jaw bone.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Prachya Janhom ◽  
Permphan Dharmasaroja

In vitrostudies have shown that extracts from mangosteen (Garcinia mangostanaLinn.) act as antioxidants and cytoprotective agents against oxidative damage. The protective effect of alpha-mangostin, the major xanthone found in the pericarp of the mangosteen, in cellular models of Parkinson’s disease (PD), has not been investigated. This study aims to investigate whether alpha-mangostin could protect SH-SY5Y neuroblastoma cells from MPP+-induced apoptosis. The effects of alpha-mangostin on MPP+-induced cell death were evaluated with a cell viability assay, staining for nuclear DNA morphology, flow cytometry for apoptotic cells and reactive oxygen species (ROS) production, quantitative real-time PCR for the expression of p53, Bax, and Bcl-2, and western blot analysis for cleaved caspase-3. Concomitant treatment with alpha-mangostin attenuated the effect of MPP+on cell viability and apoptotic cell death. Alpha-mangostin reduced ROS formation induced by MPP+. Bax/Bcl-2 expression ratio and expression of p53 were significantly lower in cells cocultured with alpha-mangostin and MPP+. The cotreated cells showed a significant decrease in activated caspase-3 compared with MPP+treatment alone. Our data suggest that cytoprotection of alpha-mangostin against MPP+-induced apoptosis may be associated with the reduction of ROS production, modulating the balance of pro- and antiapoptotic genes, and suppression of caspase-3 activation.


Sign in / Sign up

Export Citation Format

Share Document