scholarly journals A Study On Effect of SiC And OFHC Cu-Fe29Ni17Co Reinforcement With AA7075 On Microstructure, Mechanical And Wear Rate of Hybrid Composites

Author(s):  
Ramasubbu Narasimmalu ◽  
Ramabalan Sundaresan

Abstract The silicon carbide (SiC) reinforcement with aluminium alloy 7xxx series has been found to be limited value as per the mechanical properties and wear behaviour of previous studies. In order to improve limited mechanical properties of hybrid aluminium metal matrix composites, the SiC and OFHC Cu-Fe29Ni17Co reinforcement has been added with AA7075 alloy. Hence, the AA7075/SiC/Cu-Fe-Ni hybrid composites have been fabricated through a stir casting route under different weight percentages of SiC reinforcement. The mechanical properties such as hardness, compressive strength, tensile strength and wear rate have been investigated. The micro structure of hybrid composites found that the reinforcement particles in matrix alloy have been evenly spread. The silicon carbide and Cu-Fe-Ni alloy in aluminium solid solution has been found as well bonded interfacial reactions. The hardness, tensile strength, yield strength, compressive strength and wear rate were improved by 23.9 %, 48 %, 47 %, 15.3 % and 70 % for hybrid composite by adding 15 wt. %SiC and 15 wt. % Cu-Fe-Ni with AA7075 alloy, compared to matrix alloy.

2015 ◽  
Vol 787 ◽  
pp. 658-663 ◽  
Author(s):  
B. Geetha ◽  
K. Ganesan

An Investigation was carried out to study the effect of red mud reinforcement in Al-6Si-0.45Mg alloy (A356) for improving hardness, wear rate and co-efficient friction. The red mud 53 micron size particles collected from MALCO, Mettur, Tamil Nadu, India, was preheated in a furnace to 500o C and mixed with molten Al-6Si-0.45Mg alloy to make the composite specimens. Al-6Si-0.45Mg alloy-red mud composite specimens were manufactured by stir casting technique using Al-6Si-0.45Mg alloy as matrix and reinforced with 5%, 10%, 15% and 20% volume percentages red mud as the reinforcement. The Al-6Si-0.45Mg alloy–red mud composite specimens were T6 heat treated to improve the mechanical properties. The artificial aging time and aging duration were varied to study their effect on mechanical properties of the composites. Then the specimens hardness, wear rate and coefficient of friction were tested as per ASTM standards. It was found that the hardness increased when the red mud content was increased in the base alloy at all the heat treatment conditions. The peak age timing which gives highest hardness was found to decrease with increased red mud content. The wear rate was decreased when the hardness was increased. The effect of solution treatment and artificial aging on the microstructure was also studied by microscopy.


2011 ◽  
Vol 462-463 ◽  
pp. 967-971
Author(s):  
Mahamad Noor Wahab ◽  
Mariyam Jameelah Ghazali ◽  
Abdul Razak Daud

Microstructure and mechanical properties of heat treated Al-Si alloy containing up to 10 wt% aluminum nitride (AlN) particles were investigate. In this work high purity AlN powder with different weight percentage of 0, 5, 7 and 10 were calculated as reinforced material to the metal matrix composites. The Al-Si matrix was prepared by a bottom pour stir casting technique. Heat treatment was performed by soaking and followed by an aged treatment. It was found that the AlN particles were scattered randomly distributed in the matrix composite. Ageing induced Si grain transformation into to spheroid shapes while Al dendrites tend to become finer. Ultimate tensile strength (UTS) had improved drastically from to 125MPa to 306MPa for un-aged Al-Si alloy and aged AlN 7 wt%. Fracture morphologies showed a pronounced feature with small dimples, tear ridges and micro neck particularly in the aged samples leading to a higher tensile value and increase in ductility. The presence of AlN particles in the alloys had improved the tensile strength by slowing down the plastic deformation during tensile test.


Author(s):  
Surendra Patel ◽  
Raman Nateriya ◽  
G. Dixit

The aim of this study was to determine the compressive properties of silicon carbide (SiC) and zircon sand (ZrSiO4) particulate reinforced with ADC-12 alloy, ADC-12 alloy composite. In this experimental study, SiC and ZrSiO4 particulates reinforced with ADC-12 alloy composite were manufactured by stir casting methods. Compressive properties of these composite materials were investigated by different weight percentages of dual reinforcement combinations (9+3) %, (6+6) %, (3+9) %wt. silicon carbide (SiC) and zircon sand (ZrSiO4)respectively, The compressive tests were conducted to determine compressive strength and young’s modulus to investigate the effects of reinforce materials on different combinations of weight percentages. The outcome of the investigations reveals that the tensile strength of composites reinforced by Zircon sand (ZrSiO4) and silicon carbide particles with a total reinforcement 12% wt, and in this hybrid reinforcement the variations (9+3) %, (6+6) %, (3+9) % were taken in to account for investigating the properties such as density, compressivestrength and hardness of the composites synthesized by Stir casting technique, also compared between each other’s. The mechanical properties evaluation reveals variations in hardness and the compressive strength values with the composite combinations. From the experimental studies, the optimum volume fraction of hybrid reinforcement in ADC-12 alloy on the basis of microstructure and mechanical properties it is found that the (6+6) wt.% combination.


2021 ◽  
Vol 39 (4A) ◽  
pp. 642-652
Author(s):  
Aveen K. Yawer ◽  
Niveen J. Abdulkader ◽  
Ahmed A. Zainalaadbeen

In this work, nanosized Boron nitride and silicon carbide reinforced ZA - 12 matrix hybrid composites were produced using stir casting technique with using of aluminum scrap (AA 2024), pure Al (electrical wires) and zinc scraps. Microstructure Observation was revealed by using scanning electron microscopy, and the analysis showed a uniform distribution of (SiC and BN) hybrid nanoparticles for the Zn-Al matrix. Also,  an optical microscope was used to display the dendritic structure and reinforcement particles that dispersed uniformly in the matrix. Mechanical tests results confirmed that the hardness and the compression was increased with increasing the hybrid nanoparticle's percentage, whereas the wear rate decreased as the reinforcing materials increased. Since nanoparticles restrict dislocation movement, the mechanical properties are enhanced. The improvement ratio in hardness after addition was 26%., and in wear rate was 24% and for the compression strength the improvement was (19%).


2019 ◽  
Vol 13 (1) ◽  
pp. 4380-4389
Author(s):  
Gowrishankar M. C. ◽  
Sathyashankara Sharma ◽  
B. K. Pavan ◽  
Kamath Kiran ◽  
Kumar Rajendra ◽  
...  

Aluminium alloy matrix composites with Al2O3 reinforcements exhibit superior mechanical properties and utilize in several demanding fields’ viz., automobile, aerospace, defense, sports equipment, electronics and bio-medical. The present work emphasizes on improvement of microstructure and mechanical properties of age hardened graphite and alumina reinforced Al alloy matrix hybrid composites. Different composites with a constant carbon content of 1 weight % and 0, 2, 4 and 6 weight % Al2O3 as reinforcements are fabricated by using stir casting technic and tested for hardness, tensile and impact strength. Scanning electron microscopy (SEM) is performed to analyse the failure mode under tensile load. All the composites are subjected to age hardening treatment with solutionising temperature of 530oC and aging temperatures of 100 and 200oC. The peak hardness of the composites at two aging temperatures are noted. Tensile and impact tests are conducted for the peak aged specimens.  Results show substantial increase in the hardness of the age hardened specimens in the range of 34-44% in comparison with the as cast specimens. Result analysis shows increase in tensile strength (upto 40%) and decrease in impact resistance (upto 33%) with the increase in weight % of reinforcements. As the aging temperature increases a reduction in tensile strength and impact resistance is observed in each composites.


2014 ◽  
Vol 592-594 ◽  
pp. 705-710 ◽  
Author(s):  
S. Dhanalakshmi ◽  
N Mohanasundararaju ◽  
P.G. Venkatakrishnan

A hybrid Al7075 metal matrix composites have been fabricated through liquid metallurgy route (Stir Casting method) using Al2O3 and B4C as reinforcement materials. The effect of weight percentage of reinforcement materials on mechanical properties of the composites have been studied by varying the weight percentage of Al2O3 as 3, 6, 9, 12 and 15% while keeping constant weight percentage of B4C (3%). The as-cast microstructure, tensile strength, micro and macro hardness of the fabricated hybrid composites have been studied. The mechanical properties of the prepared composites were increased with increasing the weight percentage of the reinforcement in the composite. The maximum tensile strength, micro-hardness and macro-hardness of 309 MPa, 140 VHN, and 112 BHN, respectively, were obtained for a hybrid Al7075 matrix composite containing 15% Al2O3 and 3% B4C.


2014 ◽  
Vol 984-985 ◽  
pp. 326-330
Author(s):  
T.M. Chenthil Jegan ◽  
D. Ravindran ◽  
M. Dev Anand

Metal Matrix Composites possesses high mechanical properties compared to unreinforced materials. Aluminium Matrix Composites (AMC) is attracted in the emerging world because of its low cost, less weight and enhanced mechanical properties. In the present study the enhancement in mechanical properties like hardness and tensile strength of AMCs by reinforcing AA 6061 matrix with silicon carbide (SiC) and boron carbide (B4C) particles are analyzed. By enhanced stir casting method aluminium matrix was reinforced with boron carbide particulates and silicon carbide particulates with the various weight percentage of 2.5 %,5% and 7.5%.The tensile strength and hardness was found to increase with the increase in wt% of the reinforcement. From the analysis it is observed that the mechanical property of B4C reinforced AMC is significantly good compared to SiC reinforced AMC.


2020 ◽  
Vol 979 ◽  
pp. 34-39
Author(s):  
K. Sudhindra Srinivas ◽  
M. Murali Mohan

The epidemic adoption of particulate metal matrix composites (MMCs) for engineering applications has been delay by the high cost of producing components of even minimally complex shape. The aluminum-based composites find its applications widely in transport, aerospace, marine, automobile and mineral processing industries, owing to their improved strength, stiffness and wear resistance properties. This paper, presents the overview of the addition of different reinforcements to aluminium alloy. The reinforcements are added to the Al7075 by using stir casting method. Effect of these reinforcements like Titanium carbide (TiC) and silicon (Si) influencing on the mechanical properties like tensile strength, hardness was studied. Research relevant to these factors which influence particles distribution were noticed by conducting the experimental studies of Al7075 hybrid composites.The mechanical properties and the microstructure of Al–TiC-Si metal matrix composite has shown the significant improvement in Hardness and Tensile strength, with increase in TiC and Si particles in weight percentage of composites.


2017 ◽  
Vol 263 ◽  
pp. 184-188 ◽  
Author(s):  
P. Subramanya Reddy ◽  
R. Kesavan ◽  
B. Vijaya Ramnath

The investigation of mechanical properties of silicon carbide (SiC) powders reinforced with aluminum alloy composites are recorded in this paper. SiC powders of approximately 35µm size were added in an aluminum alloy matrix to manufacture the samples of ratios 1, 2, 3 and 4 by weight % using the stir casting technique. The specimens were fabricated and several tests were conducted to evaluate the mechanical properties such as tensile strength, hardness and impact strength and then the values are compared with the base alloy. It has been observed from the results that the hardness, impact energy and tensile strength increases with the increase in % of SiC particles until 2% and drops on further increase in the SiC particles.


2019 ◽  
Vol 25 (4) ◽  
pp. 253 ◽  
Author(s):  
Manoj Kumar Pal ◽  
Arnav Vikram ◽  
Vineet Bajaj

<p class="AMSmaintext">Aluminium6061 alloy composites containing various volume fractions of Silicon Carbide (SiC) particles (0, 5%, 10%, 15%, 20% and 25%) were prepared by stir casting method. In the current study,<strong> </strong>microstructures and mechanical properties of cast silicon carbide (SiC) reinforced aluminum matrix composites (AMCs) were investigated. Optical microscopic examination, SEM, tensile strength test, hardness test and elongation test were carried out. The results showed that with the addition of SiC reinforcements in Aluminum6061 matrix increased hardness and tensile strength however, decreased elongation at 25% SiC reinforced AMC. Hardness and tensile strength were observed to be are maximum at 25% SiC and elongation is minimum at 25% SiC. Microstructural observation confirmed clustering and homogeneous distribution of SiC particles in the Al6061 matrix.</p>


Sign in / Sign up

Export Citation Format

Share Document