scholarly journals New Candidates for Furin Inhibition as Probable Treat for COVID-19: Docking Output

Author(s):  
Mohammad Reza Dayer

Abstract Furin is a serine protease that takes part in the processing and activation of the host cell pre-proteins. The enzyme also plays an important role in the activation of several viruses like the newly emerging SARS-CoV-2 virus that causes COVID-19 disease with a high rate of virulence and mortality. Unlike viral enzymes, furin owns a constant sequence and active site characteristics and seems to be a better target for drug design for COVID-19 treatment. Considering furin active site as receptor and some approved drugs from different classes including antiviral, antibiotics, and anti protozoa/anti parasites with suspected beneficial effects on COVID-19, as ligands we have carried out docking experiments in HEX software to pickup those capable to bind furin active site with high affinity and suggest them as probable candidates for clinical trials assessments. Our docking experiments show that saquinavir, nelfinavir, and atazanavir with cumulative inhibitory effects of 2.52, 2.16, and 2.13, respectively seem to be the best candidates for furin inhibition even in severe cases of COVID-19 as adjuvant therapy, while clarithromycin, niclosamide, and erythromycin with cumulative inhibitory indices of 1.97, 1.90, and 1.84, respectively with lower side effects than antiviral drugs could be suggested as prophylaxes for the first stage of COVID-19 treatment.

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3193
Author(s):  
Christina Pfab ◽  
Luisa Schnobrich ◽  
Samir Eldnasoury ◽  
André Gessner ◽  
Nahed El-Najjar

The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.


2020 ◽  
Vol 13 (4) ◽  
pp. 273-294 ◽  
Author(s):  
Elahe Zarini-Gakiye ◽  
Javad Amini ◽  
Nima Sanadgol ◽  
Gholamhassan Vaezi ◽  
Kazem Parivar

Background: Alzheimer’s disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. Objective: Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. Methods: We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were “Alzheimer's disease” or “dementia” and “medicine” or “drug” or “treatment” and “clinical trials” and “interventions”. Manuscripts that met the objective of this study were included for further evaluations. Results: Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. Conclusion: The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vicky Mody ◽  
Joanna Ho ◽  
Savannah Wills ◽  
Ahmed Mawri ◽  
Latasha Lawson ◽  
...  

AbstractEmerging outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is a major threat to public health. The morbidity is increasing due to lack of SARS-CoV-2 specific drugs. Herein, we have identified potential drugs that target the 3-chymotrypsin like protease (3CLpro), the main protease that is pivotal for the replication of SARS-CoV-2. Computational molecular modeling was used to screen 3987 FDA approved drugs, and 47 drugs were selected to study their inhibitory effects on SARS-CoV-2 specific 3CLpro enzyme in vitro. Our results indicate that boceprevir, ombitasvir, paritaprevir, tipranavir, ivermectin, and micafungin exhibited inhibitory effect towards 3CLpro enzymatic activity. The 100 ns molecular dynamics simulation studies showed that ivermectin may require homodimeric form of 3CLpro enzyme for its inhibitory activity. In summary, these molecules could be useful to develop highly specific therapeutically viable drugs to inhibit the SARS-CoV-2 replication either alone or in combination with drugs specific for other SARS-CoV-2 viral targets.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3081
Author(s):  
Mohammad Amin Atazadegan ◽  
Mohammad Bagherniya ◽  
Gholamreza Askari ◽  
Aida Tasbandi ◽  
Amirhossein Sahebkar

Background: Among non-communicable diseases, cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity in global communities. By 2030, CVD-related deaths are projected to reach a global rise of 25 million. Obesity, smoking, alcohol, hyperlipidemia, hypertension, and hyperhomocysteinemia are several known risk factors for CVDs. Elevated homocysteine is tightly related to CVDs through multiple mechanisms, including inflammation of the vascular endothelium. The strategies for appropriate management of CVDs are constantly evolving; medicinal plants have received remarkable attention in recent researches, since these natural products have promising effects on the prevention and treatment of various chronic diseases. The effects of nutraceuticals and herbal products on CVD/dyslipidemia have been previously studied. However, to our knowledge, the association between herbal bioactive compounds and homocysteine has not been reviewed in details. Thus, the main objective of this study is to review the efficacy of bioactive natural compounds on homocysteine levels according to clinical trials and animal studies. Results: Based on animal studies, black and green tea, cinnamon, resveratrol, curcumin, garlic extract, ginger, and soy significantly reduced the homocysteine levels. According to the clinical trials, curcumin and resveratrol showed favorable effects on serum homocysteine. In conclusion, this review highlighted the beneficial effects of medicinal plants as natural, inexpensive, and accessible agents on homocysteine levels based on animal studies. Nevertheless, the results of the clinical trials were not uniform, suggesting that more well-designed trials are warranted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hu Zhu ◽  
Catherine Z. Chen ◽  
Srilatha Sakamuru ◽  
Jinghua Zhao ◽  
Deborah K. Ngan ◽  
...  

AbstractThe recent global pandemic of the Coronavirus disease 2019 (COVID-19) caused by the new coronavirus SARS-CoV-2 presents an urgent need for the development of new therapeutic candidates. Many efforts have been devoted to screening existing drug libraries with the hope to repurpose approved drugs as potential treatments for COVID-19. However, the antiviral mechanisms of action of the drugs found active in these phenotypic screens remain largely unknown. In an effort to deconvolute the viral targets in pursuit of more effective anti-COVID-19 drug development, we mined our in-house database of approved drug screens against 994 assays and compared their activity profiles with the drug activity profile in a cytopathic effect (CPE) assay of SARS-CoV-2. We found that the autophagy and AP-1 signaling pathway activity profiles are significantly correlated with the anti-SARS-CoV-2 activity profile. In addition, a class of neurology/psychiatry drugs was found to be significantly enriched with anti-SARS-CoV-2 activity. Taken together, these results provide new insights into SARS-CoV-2 infection and potential targets for COVID-19 therapeutics, which can be further validated by in vivo animal studies and human clinical trials.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1109 ◽  
Author(s):  
Stefania Sut ◽  
Gokhan Zengin ◽  
Filippo Maggi ◽  
Mario Malagoli ◽  
Stefano Dall’Acqua

Triterpene acid and phenolic constituents from nine ancient varieties of apple (Malus domestica) fruits cultivated in Fanna, Friuli Venezia Giulia region, northeast Italy, were analyzed and compared with four commercial apples (‘Golden Delicious’, ‘Red Delicious’, ‘Granny Smith’ and ‘Royal Gala’). Total phenolic and flavonoid contents were measured by spectrophotometric assays. The quali-quantitative fingerprint of secondary metabolites including triterpene acid was obtained by LC-DAD-(ESI)-MS and LC-(APCI)-MS, respectively. Based on the two LC-MS datasets, multivariate analysis was used to compare the composition of ancient fruit varieties with those of four commercial apples. Significant differences related mainly to the pattern of triterpene acids were found. Pomolic, euscaphyc, maslinic and ursolic acids are the most abundant triterpene in ancient varieties pulps and peels, while ursolic and oleanolic acids were prevalent in the commercial fruits. Also, the content of the phenolic compounds phloretin-2-O-xyloglucoside and quercetin-3-O-arabinoside was greater in ancient apple varieties. The antioxidant (radical scavenging, reducing power, metal chelating and phosphomolybdenum assays) and enzyme inhibitory effects (against cholinesterase, tyrosinase, amylase and glucosidase) of the samples were investigated in vitro. Antioxidant assays showed that the peels were more active than pulps. However, all the samples exhibited similar enzyme inhibitory effects. Ancient Friuli Venezia Giulia apple cultivars can be a source of chlorogenic acid and various triterpene acids, which are known for their potential anti-inflammatory activity and beneficial effects on lipid and glucose metabolism. Our results make these ancient varieties suitable for the development of new nutraceutical ingredients.


Author(s):  
Zoltán Horváth ◽  
László Vécsei

The current increase in cardiovascular and cerebrovascular morbidity is a growing burden for society. Consideration must therefore be given to compounds capable of slowing down these pathological processes without significant adverse effects. The natural vitamins pantetheine/pantothenic acid are major precursors of coenzyme A and acyl carrier protein, which are essential for fatty acid oxidation and participate in the metabolism of cholesterol and carbohydrates and in at least 70 other enzymatic processes. Following a number of theoretical considerations and clinical observations, various clinical studies have revealed that they possess significant beneficial effects. In particular, they demonstrate useful moderating effects on vascular pathological processes, lowering lipid levels, and inhibiting platelet functions and lipid peroxidation. Although they are natural, well-tolerated therapeutic agents, few controlled clinical trials have been conducted. The available data suggest the need for larger clinical trials and possible use of pantetheine/pantothenic acid as adjuvant therapy.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 588
Author(s):  
Hui-Fang Chiu ◽  
Kamesh Venkatakrishnan ◽  
Oksana Golovinskaia ◽  
Chin-Kun Wang

Hypertension (HT) is one of the pivotal risk factors for various detrimental diseases like cardiovascular diseases (CVDs), cerebrovascular disease, and renal dysfunction. Currently, many researchers are paying immense attention to various diet formula (dietary approach) with a special focus on micro and macronutrients along with modified lifestyle and standard anti-hypertensive drugs. Micronutrients (minerals/vitamins) play a central role in the regulation of blood pressure (BP) as they aid the function of macronutrients and also improve the anti-hypertensive functions of some anti-hypertensive agents. Even though several studies have demonstrated the beneficial effects of micronutrients on controlling BP, still some ambiguity exists among the nutritionists/doctors, which combination or individual mineral (dietary approach) contributes to better BP regulation. Therefore, this critical review article was attempted to delineate the underlying role of micronutrients (minerals and vitamins) for the management and prevention or delaying of HT and their related complications with strong affirmation from clinical trials as well as its mechanism of controlling BP. Moreover, the major source and recommended daily allowance (RDA) of various micronutrients are included in this review for guiding common readers (especially HT subjects) and dieticians to choose/recommend a better micronutrient and their combinations (other nutrients and standard anti-hypertensive drugs) for lowering the risk of HT and its related co-morbid conditions like CVDs.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Masamichi Hirose ◽  
Yasuchika Takeishi ◽  
Hisashi Shimojo ◽  
Toshihide Kashihara ◽  
Tsutomu Nakada ◽  
...  

Introduction: Beneficial effects of nicorandil on the treatment of hypertensive heart failure (HF) and ischemic heart disease have been suggested. However, whether nicorandil has inhibitory effects on HF and ventricular arrhythmias caused by the activation of G protein alpha q (Gαq) -coupled receptor (GPCR) signaling pathway still remains unknown. We examined effects of chronic and acute administration of nicorandil on the development of HF and ventricular action potential (VAP) in transgenic mice with transient cardiac expression of activated Gαq (Gαq-TG), respectively. Method and Results: Nicorandil (6 mg/kg/day) or vehicle was chronically administered in Gαq-TG mice for 24 weeks from 8 weeks of age, and then ventricular function, and electrical and structural changes were investigated in the hearts. Chronic nicorandil administration improved the reduction of left ventricular fractional shortening (p < 0.001) in Gαq-TG hearts. During 10 min of electrocardiogram recording, premature ventricular contractions (more than 20 beats/min) were observed in 7 of 10 vehicle-treated Gαq-TG but in none of 10 nicorandil-treated Gαq-TG hearts (p < 0.01). QT interval was significantly shorter in nicorandil-treated Gαq-TG than in vehicle-treated Gαq-TG hearts (p < 0.05). Chronic nicorandil administration improved the increased ventricular interstitial fibrosis (p < 0.05) but not cardiac hypertrophy in Gαq-TG left ventricles. Real time RT-PCR revealed that mRNA expression levels of s sulfonylurea receptor 2B (SUR-2B) were decreased in vehicle-treatd Gαq-TG but not in nicorandil-treated Gαq-TG. In addition, chronic nicorandil increased endotherial nitric oxide syntheses gene expression in Gαq-TG hearts (p < 0.05). Acute nicorandil administration (1 microM) significantly shortened the prolonged VAP duration and reduced the number of PVCs in vehicle treated Gαq-TG hearts. Conclusions: These findings suggest that nicorandil inhibits ventricular electrical and structural remodeling and arrhythmias through the shortening of VAP duration and the increased expression of SUR-2B and eNOS in a mouse model of HF.


2019 ◽  
Vol 1 (1) ◽  
pp. 36-39
Author(s):  
Bernd Giebel ◽  
Verena Börger ◽  
Mario Gimona ◽  
Eva Rohde

Human mesenchymal stem/stromal cells (MSCs) represent a promising tool in regenerative medicine. Until now, almost one thousand NIH-registered clinical trials investigated their immunomodulatory and pro-regenerative therapeutic potential in various diseases. Despite controversial reports regarding the efficacy of MSC-treatments, MSCs appear to exert their beneficial effects in a paracrine manner rather than by cell replacement. In this context, extracellular vesicles (EVs), such as exosomes and microvesicles, seem to induce the MSCs’ therapeutic effects. Here, we briefly illustrate the potential of MSC-EVs as therapeutic agent of the future.


Sign in / Sign up

Export Citation Format

Share Document