scholarly journals MTHFD2 Regulates the AKT/MYC Signaling Pathway in Bladder Cancer and Promotes Proliferation, Viability and Migration in Vitro

2020 ◽  
Author(s):  
DaoHu Chen ◽  
Huihui Li ◽  
Haiyin Zhang ◽  
Qingman Li ◽  
YanSheng Huang ◽  
...  

Abstract Background: Numerous studies have reported that MTHFD2 is overexpressed in several human cancers and functions as a valuable prognostic factor. However, little is known about its role in bladder cancer. Methods: We carried out an in silicon analysis of MTHFD2 expression status in bladder cancer tissues and the impact of MTHFD2 on the overall survival of patients. Flag-MTHFD2 plasmid and MTHFD2-knockdown vector were constructed to investigate the function of MTHFD2. The role of MTHFD2 in MTHFD2-overexpressing or MTHFD2-deficient EJ cells was examined using CCK8, colony formation assays, soft agar assays and Transwell migration assays. A luciferase reporter assay was employed to test the impact of MTHFD2 expression on the transcriptional activity of AKT and MYC. The expression of CDK4 and CCND4 in MTHFD2-deficient EJ cells was detected by Western blot. To certify the AKT role in MTHFD2-modulated EJ cell behaviors, a rescue assay were carried out by re-overexpression MYC in MTHFD2-defienct EJ cells.Results: By analyzing the GEPIA database, we found that the expression of MTHFD2 is increased in bladder cancer tissues. Patients with high MTHFD2 displayed poorer survival than patients with low MTHFD2. A series of in vitro functional assays revealed that ectopic expression of MTHFD2 enhanced cell proliferative and migratory activity while MTHFD2 deficiency had the opposite impact on the tumorigenic potential of EJ cells. Mechanistically, we found that overexpressing of MTHFD2 increased AKT and MYC transcriptional activity. Two critical downstream effectors,CDK4 and CCND2 was attenuated in MTHFD2-deficienct cells. Overexpression of MYC rescured the inhibitory effects of MTHFD2 deficiency in the CCND2 and CDK2 expression.Conclusion: Overall, we first uncovered that MTHFD2 could play a protumor role in bladder cancer by activating the AKT/MYC signaling pathway, which may highlight its prognostic potential in bladder cancer and support the rationale for MTHFD2-targeted drug intervention.

Author(s):  
Huangheng Tao ◽  
Yixiang Liao ◽  
Youji Yan ◽  
Zhiwen He ◽  
Jiajie Zhou ◽  
...  

NF-κB signaling is very important in cancers. However, the role of BRCC3-associated NF-κB signaling activation in bladder cancer remains to be characterized. Western blotting and IHC of tissue microarray were used to confirm the abnormal expression of BRCC3 in bladder cancer. Growth curve, colony formation, soft agar assay and Xenograft model were performed to identify the role of BRCC3 over-expression or knock-out in bladder cancer. Further, RNA-Seq and luciferase reporter assays were used to identify the down-stream signaling pathway. Finally, co-immunoprecipitation and fluorescence confocal assay were performed to verify the precise target of BRCC3. Here, we found that high expression of BRCC3 promoted tumorigenesis through targeting the TRAF2 protein. BRCC3 expression is up-regulated in bladder cancer patients which indicates a negative prognosis. By in vitro and in vivo assays, we found genetic BRCC3 ablation markedly blocks proliferation, viability and migration of bladder cancer cells. Mechanistically, RNA-Seq analysis shows that NF-κB signaling is down-regulated in BRCC3-deficient cells. BRCC3 binds to and synergizes with TRAF2 to activate NF-κB signaling. Our results indicate that high BRCC3 expression activates NF-κB signaling by targeting TRAF2 for activation, which in turn facilitates tumorigenesis in bladder cancer. This finding points to BRCC3 as a potential target in bladder cancer patients.


2018 ◽  
Vol 51 (2) ◽  
pp. 513-527 ◽  
Author(s):  
Junfeng Zhang ◽  
Longsheng Wang ◽  
Shiyu Mao ◽  
Mengnan Liu ◽  
Wentao Zhang ◽  
...  

Background/Aims: Increasing evidence showed that miR-1-3p plays a major role in malignant tumor progression. However, the specific biological function of miR-1-3p in bladder cancer is yet unknown. Methods: The expression levels of miR-1-3p in bladder cancer tissues and cell lines were examined by qRT-PCR. Bisulfite sequencing PCR was used for DNA methylation analysis. The target of miR-1-3p was validated by a dual luciferase reporter assay, and the effects of miR-1-3p on phenotypic changes in bladder cancer cells were investigated in vitro and in vivo. Results: The expression of miR-1-3p in bladder cancer cells was downregulated as compared to normal SV-HUC-1 cells. Also, the expression of miR-1-3p was significantly lower in bladder cancer tissues than the corresponding non-cancerous tissues. The methylation status of CpG islands was involved in the regulation of miR-1-3p expression. miR-1-3p inhibited the bladder cancer cell proliferation, migration, and invasion by directly targeting the 3’-UTR of glutaminase. It also exerted an anti-tumor effect by negatively regulating the glutaminase in a xenograft mouse model. Furthermore, GLS depletion resulted in the prolonged expression of γH2AX. Conclusion: Taken together, these results demonstrated that miR-1-3p acts as a tumor suppressor via regulation of glutaminase expression in bladder cancer progression, and miR-1-3p might represent a novel therapeutic target for the treatment of bladder cancer.


2018 ◽  
Author(s):  
Shabir Zargar ◽  
Vivek Tomar ◽  
Vidyarani Shyamsundar ◽  
Ramshankar Vijayalakshmi ◽  
Kumaravel Somasundaram ◽  
...  

ABSTRACTmiR-155 is an oncomir, generated as a non-coding RNA from BIC gene whose promoter activity is mainly controlled via AP-1 and NF-κB transcription factors. We found that the expression levels of miR-155 and Pdcd4 exhibit inverse relationship in tongue cancer cells (SAS and AWL) and tumor tissues compared to normal FBM cells and normal tongue tissues, respectively. Insilco and In-vitro studies with 3’UTR of Pdcd4 via luciferase reporter assays, qPCR and western blots show that miR-155 directly targets Pdcd4 mRNA and blocks its expression. Ectopic expression of Pdcd4 or knockdown of miR-155 in tongue cancer cells predominantly reduces AP-1 dependent transcriptional activity of BIC promoter and decreases miR-155 expression. In this study, we demonstrate that miR-155 expression is modulated by a feedback loop between Pdcd4, AP-1 and miR-155 which results in enhanced expression of miR-155 with a consequent progression of tongue tumorigenesis. Further, miR-155 knockdown increases apoptosis, arrests cell cycle, regresses tumor size in xenograft nude mice and reduces cell viability and colony formation in soft agar and clonogenic assays. Thus, the restoration of Pdcd4 levels by the use of molecular manipulation such as using miR-155 sponge have important role in the therapeutic intervention of cancers, including tongue cancer.


Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


2021 ◽  
Vol 20 ◽  
pp. 153303382199007
Author(s):  
Wenlin Liu ◽  
Jiandong Zhan ◽  
Rong Zhong ◽  
Rui Li ◽  
Xiaoli Sheng ◽  
...  

Background: Laryngeal cancer is one of the most common malignant tumors among head and neck cancers. Accumulating studies have indicated that long noncoding RNAs (lncRNAs) play an important role in laryngeal cancer occurrence and progression, however, the functional roles and relative regulatory mechanisms of lncRNA growth arrest-specific transcript 5 (GAS5) in laryngeal cancer progression remain unclear. Methods: The expression of lncRNA GAS5 in both laryngeal cancer tissues and cell lines was evaluated using quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay. The relationships between lncRNA GAS5 expression and clinical parameters were also analyzed. To determine the biological function of lncRNA GAS5, a lncRNA GAS5-specific plasmid was first transfected into laryngeal cancer cells using lentiviral technology. Cell counting kit-8 assay, flow cytometry, and Transwell assays were used to detect in vitro cell proliferation, apoptosis, cycle distribution, and metastasis abilities, respectively. Furthermore, in vivo cell growth experiments were also performed using nude mice. Additionally, western blotting was performed to identify the underlying regulatory mechanism. Results: In the current study, lncRNA GAS5 was downregulated in laryngeal cancer tissues and its low expression was closely associated with poor tumor differentiation, advanced TNM stage, lymph node metastasis, and shorter overall survival time. In addition, lncRNA GAS5 upregulation significantly inhibited laryngeal cancer cell proliferation both in vitro and in vivo. Moreover, in response to lncRNA GAS5 overexpression, more laryngeal cancer cells were arrested at the G2/M stage, accompanied by increased cell apoptosis rates and suppressed migration and invasion capacities. Mechanistically, our data showed that the overexpression of lncRNA GAS5 significantly regulated the PI3K/AKT/mTOR signaling pathway. Conclusion: LncRNA GAS5 might act as a suppressor gene during laryngeal cancer development, as it suppressed cell proliferation and metastasis by regulating the PI3K/AKT/mTOR signaling pathway; thus, lncRNA GAS5 is a promising therapeutic biomarker for the treatment of laryngeal cancer.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Jiewei Lin ◽  
Zhiwei Xu ◽  
Junjie Xie ◽  
Xiaxing Deng ◽  
Lingxi Jiang ◽  
...  

AbstractAPOL1 encodes a secreted high-density lipoprotein, which has been considered as an aberrantly expressed gene in multiple cancers. Nevertheless, the role of APOL1 in the regulatory mechanisms of pancreatic cancer remains unknown and should be explored. We identified APOL1 was abnormally elevated in human pancreatic cancer tissues compared with that in adjacent tissues and was associated with poor prognosis. The effects of APOL1 in PC cell proliferation, cell cycle, and apoptosis was verified via functional in vitro and in vivo experiments. The results showed that knockdown of APOL1 significantly inhibited the proliferation and promoted apoptosis of pancreatic cancer. In addition, we identified APOL1 could be a regulator of NOTCH1 signaling pathway using bioinformatics tools, qRT-PCR, dual-luciferase reporter assay, and western blotting. In summary, APOL1 could function as an oncogene to promote proliferation and inhibit apoptosis through activating NOTCH1 signaling pathway expression in pancreatic cancer; therefore, it may act as a novel therapeutic target for pancreatic cancer.


Author(s):  
Xuyan Li ◽  
Xuanfang Zhong ◽  
Xiuhua Pan ◽  
Yan Ji

Growing evidence has demonstrated that numerous microRNAs (miRNAs) may participate in the regulation of gastric carcinogenesis and progression. This phenomenon suggests that gastric cancer-related miRNAs can be identified as effective therapeutic targets for this disease. miRNA-708 (miR-708) has recently been reported to be aberrantly expressed in several types of cancer and contribute to carcinogenesis and progression. However, the expression level, biological roles, and underlying mechanisms of miR-708 in gastric cancer are poorly understood. Here we found that miR-708 was downregulated in gastric cancer tissues and cell lines. Downregulated miR-708 expression was significantly associated with lymphatic metastasis, invasive depth, and TNM stage. Further investigation indicated that ectopic expression of miR-708 prohibited cell proliferation and invasion in gastric cancer. Bioinformatics analysis showed that Notch1 was a potential target of miR-708. Notch1 was further confirmed as a direct target gene of miR-708 in gastric cancer by dual-luciferase reporter assay, reverse transcription quantitative polymerase chain reaction, and Western blot analysis. Furthermore, an inverse association was found between miR-708 and Notch1 mRNA levels in gastric cancer tissues. In addition, restored Notch1 expression rescued the inhibitory effects on gastric cancer cell proliferation and invasion induced by miR-708 overexpression. Our findings highlight the tumor-suppressive roles of miR-708 in gastric cancer and suggest that miR-708 may be investigated as a novel target for gastric cancer treatment.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2016 ◽  
Vol 26 (5) ◽  
pp. 817-824 ◽  
Author(s):  
Quan Zhou ◽  
Ling R. Han ◽  
Yang X. Zhou ◽  
Yan Li

ObjectiveMicroRNAs (miRNAs) play crucial roles in cervical cancer development and progression. The purposes of this study were to investigate the role of miR-195 in cervical cancer and clarify the regulation of Smad3 by miR-195.MethodsQuantitative real-time polymerase chain reaction was used to examine miR-195 expression in cervical cancer tissues and cell lines. The clinicopathological significance of miR-195 down-regulation was further analyzed. Transwell migration and invasion assays were performed. A luciferase reporter assay was conducted to confirm the target gene of miR-195, and the results were validated in cervical cancer tissues and cell lines.ResultsMiR-195 was significantly decreased in clinical tissues and cervical cancer cell lines. The low miR-195 level was significantly correlated with higher International Federation of Gynecology and Obstetrics stage, node metastasis, and deep stromal invasion. Up-regulation of miR-195 suppressed cell migration and invasion in vitro. Smad3 was verified as a direct target of miR-195, which was further confirmed by the inverse expression of miR-195 and Smad3 in patients’ specimens.ConclusionsThe newly identified miR-195/Smad3 pathway provides an insight into cervical cancer metastasis and may represent a novel therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document