scholarly journals Laser Intensity Profile Based Terahertz Field Enhancement from a Mixture of Nano-Particles Embedded in a Gas

Author(s):  
Prateek Varshney ◽  
Akhileshwar Prasad Singh ◽  
Mrityunjay Kundu ◽  
Krishna Gopal

Abstract Nano-particle embedded system plays an importance in developing of future terahertz (THz) radiation source for real-world applications. The laser interactions with nanoparticle embedded system can produce a wide range of THz radiation due to plasma oscillations excitation. We investigate THz field generation from the laser-beat wave interaction with a mixture of spherical and cylindrical graphite nanoparticles (NPs) in argon gas. Different laser intensity distributions such as Gaussian, cosh-Gaussian, flat-top and ring shape laser pulses have been studied in this work. The relevant plasmon resonance conditions with appropriate symmetry of spherical nanoparticles (SNPs) and cylindrical nanoparticles (CNPs) are discussed. THz field is enhanced upto the order of when the laser intensity redistributes along the polarization direction for a ring shape field envelope.

Author(s):  
Theodoros Tsoulos ◽  
Supriya Atta ◽  
Maureen Lagos ◽  
Michael Beetz ◽  
Philip Batson ◽  
...  

<div>Gold nanostars display exceptional field enhancement properties and tunable resonant modes that can be leveraged to create effective imaging tags or phototherapeutic agents, or to design novel hot-electron based photocatalysts. From a fundamental standpoint, they represent important tunable platforms to study the dependence of hot carrier energy and dynamics on plasmon band intensity and position. Toward the realization of these platforms, holistic approaches taking into account both theory and experiments to study the fundamental behavior of these</div><div>particles are needed. Arguably, the intrinsic difficulties underlying this goal stem from the inability to rationally design and effectively synthesize nanoparticles that are sufficiently monodispersed to be employed for corroborations of the theoretical results without the need of single particle experiments. Herein, we report on our concerted computational and experimental effort to design, synthesize, and explain the origin and morphology-dependence of the plasmon modes of a novel gold nanostar system, with an approach that builds upon the well-known plasmon hybridization model. We have synthesized monodispersed samples of gold nanostars with finely tunable morphology employing seed-mediated colloidal protocols, and experimentally observed narrow and spectrally resolved harmonics of the primary surface plasmon resonance mode both at the single particle level (via electron energy loss spectroscopy) and in ensemble (by UV-Vis and ATR-FTIR spectroscopies). Computational results on complex anisotropic gold nanostructures are validated experimentally on samples prepared colloidally, underscoring their importance as ideal testbeds for the study of structure-property relationships in colloidal nanostructures of high structural complexity.</div>


Author(s):  
Amer Imraish ◽  
Afnan Al-Hunaiti ◽  
Tuqa Abu-Thiab ◽  
Abed Al-Qader Ibrahim ◽  
Eman Hwaitat ◽  
...  

Background: The growing unsatisfaction toward the available traditional chemotherapeutic agents enhanced the need to develop new methods for obtaining materials with more effective and safe anti-cancer properties. Over the past few years, usage of metallic nanoparticles has been a target for researchers of different scientific and commercial fields due to their tiny sizes, environment friendly properties and wide range applications. To overcome the obstacles of traditional physical and chemical methods for synthesis of such nanoparticles, a new less expensive and eco-friendly method has been adopted using natural existing organisms as a reducing agent to mediate synthesis of the desired metallic nanoparticles from their precursors, a process called green biosynthesis of nanoparticles. Objective: Here in the present study, zinc iron bimetallic nanoparticles (ZnFe2O4) were synthesized via an aqueous extract of Boswellia Carteri resin mixed with zinc acetate and iron chloride precursors, and they were tested for their anticancer activity. Methods: Various analytic methods were applied for the characterization of the Phyto synthesized ZnFe2O4 and they were tested for their anticancer activity against MDA-MB-231, K562, MCF-7 cancer cell lines and normal fibroblasts. Results: Our results demonstrate the synthesis of cubic structured bimetallic nanoparticles ZnFe2O4 with an average diameter 10.54 nm. MTT cytotoxicity assay demonstrate that our phyto-synthesized ZnFe2O4 nanoparticles exhibited a selective and potent anticancer activity against K562 and MDA-MB-231 cell lines with IC50 values 4.53 µM and 4.19 µM, respectively. Conclusion: In conclusion, our bio synthesized ZnFe2O4 nano particles show a promising environmentally friendly of low coast chemotherapeutic approach against selective cancers with a predicted low adverse side effect toward normal cells. Further in vivo advanced animal research should be done to execute their applicability in living organisms.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


Author(s):  
V. A. Andreeva ◽  
M. N. Esaulkov ◽  
N. A. Panov ◽  
P. M. Solyankin ◽  
V. A. Makarov ◽  
...  
Keyword(s):  

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3735 ◽  
Author(s):  
Kęstutis Ikamas ◽  
Ignas Nevinskas ◽  
Arūnas Krotkus ◽  
Alvydas Lisauskas

We demonstrate that the rectifying field effect transistor, biased to the subthreshold regime, in a large signal regime exhibits a super-linear response to the incident terahertz (THz) power. This phenomenon can be exploited in a variety of experiments which exploit a nonlinear response, such as nonlinear autocorrelation measurements, for direct assessment of intrinsic response time using a pump-probe configuration or for indirect calibration of the oscillating voltage amplitude, which is delivered to the device. For these purposes, we employ a broadband bow-tie antenna coupled Si CMOS field-effect-transistor-based THz detector (TeraFET) in a nonlinear autocorrelation experiment performed with picoseconds-scale pulsed THz radiation. We have found that, in a wide range of gate bias (above the threshold voltage V th = 445 mV), the detected signal follows linearly to the emitted THz power. For gate bias below the threshold voltage (at 350 mV and below), the detected signal increases in a super-linear manner. A combination of these response regimes allows for performing nonlinear autocorrelation measurements with a single device and avoiding cryogenic cooling.


Machines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 56 ◽  
Author(s):  
Chiu-Keng Lai ◽  
Jhang-Shan Ciou ◽  
Chia-Che Tsai

Owing to the benefits of programmable and parallel processing of field programmable gate arrays (FPGAs), they have been widely used for the realization of digital controllers and motor drive systems. Furthermore, they can be used to integrate several functions as an embedded system. In this paper, based on Matrix Laboratory (Matlab)/Simulink and the FPGA chip, we design and implement a stepper motor drive. Generally, motion control systems driven by a stepper motor can be in open-loop or closed-loop form, and pulse generators are used to generate a series of pulse commands, according to the desired acceleration/run/deceleration, in order to the drive system to rotate the motor. In this paper, the speed and position are designed in closed-loop control, and a vector control strategy is applied to the obtained rotor angle to regulate the phase current of the stepper motor to achieve the performance of operating it in low, medium, and high speed situations. The results of simulations and practical experiments based on the FPGA implemented control system are given to show the performances for wide range speed control.


electromagnetic field at the particl e has to be computed numerically. An example of such a computation using a program based on [49] is given in Fig. 4. But not only doe s the Mie theory describe an enhancement of the laser intensity in the particles' near field, it also predicts that for certain values of the size parameter nd/X (d denoting the particle diameter, À the laser wavelength) the enhancement should be particularly efficient, resulting in a resonant intensity enhancement, the so-called "Mie-resonances". 3.2.2. Near-field induced substrate damage When inspecting contaminated samples by scanning electron microscopy (SEM) or atomic force microscopy (AFM ) after DLC using ns laser pulses, the consequences of the field enhancement process became obvious: all over the cleaned areas w e found substrate damages localized exactly at the former particle positions [35, 37-39]. These damages manifested as melting pools or even holes in the surface, typical examples can be seen in Fig. 5. The consequences for the laser cleaning process are obvious. The intensity enhancement reduces the maximum laser fluence that can be applied in the process. Usually in laser cleaning studies [19, 31 ] the laser fluence corresponding to the melting threshold of a bare surface is taken as the damage threshold fluence. Our experiments show clearly that this is an inadequate definition. Instead one must take into account the enhanced laser fluence underneath the particles, as it will be discussed in Section 4. Fro m the obtained AFM images we were able to analyse in detail the surface profile at the damaged sites. Here we found that for high field enhancement factors the silicon substrate was not only molten , but that some material was even ablated (see Sec. 4). The momentum transfer to the particles during the ablation process significantly contributes to the cleanin g process and hence local substrate ablation

2003 ◽  
pp. 327-330

2006 ◽  
Vol 59 (2) ◽  
pp. 109 ◽  
Author(s):  
Nina Morgner ◽  
Hans-Dieter Barth ◽  
Bernhard Brutschy

A new version of laser mass-spectrometry is presented, which allows the quantitative analysis of specific biocomplexes in native solution. On-demand micro droplets, injected into vacuum, are irradiated by mid IR-laser pulses. Above a certain intensity threshold they explode due to the transmitted energy, setting free a fraction of the charged biomolecules which are then mass-analyzed. Amounts of analyte in the attomolar range may be detected with the ion intensity being linear over a wide range of molarity. Evidence is given that this method is soft, tolerant against various buffers, reflects properties of the liquid phase, and suitable for studying noncovalently bonded specific complexes. This is highlighted by results from antibiotics specifically binding into the minor groove of duplex DNA.


2021 ◽  
Author(s):  
Huijuan Shen ◽  
Yaode Wang ◽  
Liang Cao ◽  
Ying Xie ◽  
Lu Wang ◽  
...  

Abstract The micro-stripe structure was prepared by laser interference induced forward transfer (LIIFT) technique, composed of Ag nano-particles (NPs). The effects of the film thickness with the carbon nano-particles mixed polyimide (CNPs@PI), Ag film thickness, and laser fluence were studied on the transferred micro-stripe structure. The periodic Ag micro-stripe with good resolution was obtained in a wide range of CNPs@PI film thickness from ~ 0.5 μm to ~ 1.0 μm for the Ag thin film ~ 20 nm. The distribution of the Ag NPs composing the micro-stripe was compact. Nevertheless, the average size of the transferred Ag NPs was increased from ~ 41 nm to ~ 197 nm with the change of the Ag donor film from ~ 10 nm to ~ 40 nm. With the increase of the laser fluence from 102 mJ•cm-2 to 306 mJ•cm-2 per-beam, the transferred Ag NPs became aggregative, improving the resolution of the corresponding micro-stripe. Finally, the transferred Ag micro-stripe exhibited the significant surface enhanced Raman scattering (SERS) property for rhodamine B (RhB). While the concentration of the RhB reached 10-10 mol•L-1, the Raman characteristic peaks of the RhB were still observed clearly at 622 cm-1, 1359 cm-1, and 1649 cm-1. These results indicate that the transferred Ag micro-stripe has potential application as a SERS chip in drug and food detection.


Sign in / Sign up

Export Citation Format

Share Document