scholarly journals An Efficient Microwave-Assisted Synthesis Method of Novel Bi2O3 Nanostructure and Its Application As a High-Performance Nanocatalyst in Preparing Benzylidene Barbituric Acid Derivatives

Author(s):  
Mahdieh Yahyazadehfar ◽  
Enayatollah Sheikhhosseini ◽  
Sayed Ali Ahmadi ◽  
Dadkhoda Ghazanfari

Abstract In this study, controllable and optimal microwave irradiation has been used to synthesize the novel nanostructures of Bi2O3 under environmental conditions. The final products had a thermal stability of 210 °C, an average particle size distribution of 85 nm, and surface area of 783 m2/g. The high thermodynamic stability of Bi2O3 nanostructures were confirmed by TG and DSC analyses. The nanostructure nature of compounds, most importantly, the use of effective, cost effective and rapid synthesis route of microwave have created significant physiochemical properties in the Bi2O3 products. These unexpected properties have made the possibility of potentials application of these products in various fields, especially in nanocatalyst applications. It is well-documented that, as Lewis acid, bismuth nanocatalyst exhibits a great catalytic activity for the green synthesis of some bio-active barbituric acid derivatives using precursors with electron-donating or –withdrawing nature in high yields (80-98%). After incorporating this catalyst into the aqueous media, all the reactions were completed within 2-3 min at room temperature. The main advantages of this method are practical facility, the availability of starting materials, and low costs besides the catalyst reusability. Additionally, the catalyst synthesis process may be carried in the aqueous media during a short period with medium to high yields. The obtained results have opened a new window for development of a novel nanocatalyst with practical application.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Srinivasa Rao Jetti ◽  
Divya Verma ◽  
Shubha Jain

Decatungstodivanadogermanic acid (H6GeW10V2O40·22H2O) was synthesized and used as a novel, green heterogeneous catalyst for the synthesis of spirofused heterocycles from one-pot three-component cyclocondensation reaction of a cyclic ketone, aldehyde, and urea in high yields under solvent-free condition in microwave irradiation at 80°C. This catalyst is efficient not only for cyclic ketones, but also for cyclic β-diketones, β-diester, and β-diamide derivatives such as cyclohexanone, dimedone, and Meldrum's acid, or barbituric acid derivatives.


Author(s):  
Abubakar Yakubu ◽  
Zulkifly Abbas ◽  
Sirajo Abdullahi ◽  
Suleiman Sahabi ◽  
Garba D. Sani

There is a continuous generation of electromagnetic fields through operations of electronic devices for this reason it is paramount that these fields be shielded so as to prevent interferences. The, conventional method for shielding these fields are by the use of thin metal foils or sheets. The metals foils are heavy, difficult to fabricate, costly and in many cases not suitable for use in many applications. For these reasons, this work is focused on using materials that is flexible, cost effective and durable, with considerable shielding effectiveness (SE). Hence, polycaprolactone (PCL) and nickel oxide (NiO) nanocomposite were synthesized using the conventional melt blending (CMB) technique. The synthesis method used is fast, easy and produces large mass of controlled composites within a short period. Rectangular waveguide, vector network analyzer, coaxial cable and open ended coaxial probe were used in the measurement of microwave properties. Measured scattering parameter was used to calculate the shielding effectiveness of the NiO/PCL composites. Findings indicates that the dielectric constant increased with increasing filler content, where the highest dielectric property was 5.09 for the 62.5 % filler and it was able to shield electromagnetic fields by up to -9.35 dB at the frequency range measured. The average particle size of the NiO nano particles was 40.5 nm using TEM analysis. The best hardness and tensile strength was recorded for the highest loading percentage. It is then concluded that the substrate produced can be tailored for electronic, telecommunication, medical applications and military shield applications.


MRS Advances ◽  
2020 ◽  
Vol 5 (57-58) ◽  
pp. 2961-2972
Author(s):  
P.C. Meléndez-González ◽  
E. Garza-Duran ◽  
J.C. Martínez-Loyola ◽  
P. Quintana-Owen ◽  
I.L. Alonso-Lemus ◽  
...  

In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).


2020 ◽  
Vol 9 (1) ◽  
pp. 386-398 ◽  
Author(s):  
Mahmood S. Jameel ◽  
Azlan Abdul Aziz ◽  
Mohammed Ali Dheyab

AbstractPlatinum nanoparticles (Pt NPs) have attracted interest in catalysis and biomedical applications due to their unique structural, optical, and catalytic properties. However, the conventional synthesis of Pt NPs using the chemical and physical methods is constrained by the use of harmful and costly chemicals, intricate preparation requirement, and high energy utilization. Hence, this review emphasizes on the green synthesis of Pt NPs using plant extracts as an alternative approach due to its simplicity, convenience, inexpensiveness, easy scalability, low energy requirement, environmental friendliness, and minimum usage of hazardous materials and maximized efficiency of the synthesis process. The underlying complex processes that cover the green synthesis (biosynthesis) of Pt NPs were reviewed. This review affirms the effects of different critical parameters (pH, reaction temperature, reaction time, and biomass dosage) on the size and shape of the synthesized Pt NPs. For instance, the average particle size of Pt NPs was reported to decrease with increasing pH, reaction temperature, and concentration of plant extract.


2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


2007 ◽  
Vol 7 (11) ◽  
pp. 4061-4064 ◽  
Author(s):  
Sang-Jin Lee ◽  
Young-Soo Yoon ◽  
Myung-Hyun Lee ◽  
Nam-Sik Oh

The present research describes synthesis of highly sinterable, nano-sized hydroxyapatite (HAp) powders using a wet chemical route with recycled eggshell and phosphoric acid as calcium and phosphorous sources. The raw eggshell was easily turned to CaO by the calcining process, and phosphoric acid was mixed with the calcined eggshell by the wet, ball-milling method. The crystalline development and microstructures of the synthesized powders and sintered samples were examined by X-ray diffractometry and scanning electron microscopy, respectively. The observed phases on the powder synthesis process were dependent on the mixing ratio (wt%) of the calcined eggshell to phosphoric acid and the heating temperature. The ball-milled, nano-sized HAp powder, which has an average particle size of 70 nm, was fully densified at 1300 °C for 1h. The Ca/P ratio for stoichiometric composition of HAp was controlled by adjustment of the mixing ratio.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
S. Mary Margaret ◽  
Albin John P. Paul Winston ◽  
S. Muthupandi ◽  
P. Shobha ◽  
P. Sagayaraj

A detailed comparative study on the synthesis process of coral-like CuO/Cu2O nanorods (NRs) and nanopolycrystals (NPCs) fabricated on Cu foil employing aqueous electrolyte via potentiostatic (POT) and galvanostatic (GAL) modes is discussed. The structural, morphological, thermal, compositional, and molecular vibration of the prepared CuO/Cu2O nanostructures was characterized by XRD, HRSEM, TG/DTA, FTIR, and EDX techniques. XRD analysis confirmed the crystalline phase of the formation of monoclinic CuO and cubic Cu2O nanostructures with well-defined morphology. The average particle size was found to be 21.52 nm and 26.59 nm for NRs (POT) and NPCs (GAL), respectively, and this result is corroborated from the HRSEM analysis. POT synthesized nanoparticle depicted a higher thermal stability up to 600°C implying that the potentiostatically grown coral-like NRs exhibit a good crystallinity and well-ordered morphology.


2010 ◽  
Vol 177 ◽  
pp. 673-676 ◽  
Author(s):  
Jun Xue ◽  
Hou Kui Xiang ◽  
Hong Qiao Ding ◽  
Shu Li Pang ◽  
Xue Hua Wang ◽  
...  

Carbon encapsulated Fe-Cu alloys nanoparticles were synthesized by using ferric nitrate, copper nitrate as metal sources and using sucrose as carbon source. The synthesis process involved a step of hydrazine hydrate reduction in alcohol solution and a step of annealing carbonization. The as-prepared samples were characterized by X-ray diffraction technique, X-ray energy dispersion spectrograph, trans- mission electron microscopy and Raman spectroscopy. The results showed the sample was core / shell structure, the metalic core was crystalline FeCu4 alloy, the shell was amorphous carbon, and the average particle size was about 51nm. The magnetic measurement by using a vibrating sample magnetometer revealed that the sample has ultra-soft magnetic property with the saturation magnetization Ms of 13.01 emu/g, residual magnetization Mr of 0.37 emu/g and coercive forces Hc of 54.43 Oe at room temperature.


2018 ◽  
Vol 762 ◽  
pp. 408-412
Author(s):  
Raivis Eglītis ◽  
Gundars Mežinskis

In this work two different hydrosols were used to impregnate a commercially available cotton fabric with anatase nanoparticles to give it photocatalytic activity. To increase the activity, different pre-treatment methods were applied. The nanoparticle size was determined using dynamic light scattering and x-ray diffraction and the fabrics were examined using scanning electron microscopy. Photocatalytic activity was measured using the degradation of methyl-orange while irradiating the samples with UV light. The synthesis method allowed to produce anatase with an average particle size of 32 to 37 nm depending on the synthesis method used.


2009 ◽  
Vol 62 (4) ◽  
pp. 353 ◽  
Author(s):  
Ji-Tai Li ◽  
Ming-Xuan Sun

The condensation of aromatic aldehydes and barbituric acid catalyzed by SiO2·12WO3·24H2O in aqueous media at room temperature gave 5-arylidene barbituric acid in high yields with or without the use of ultrasound, providing a simple and efficient route to synthesis of these compounds.


Sign in / Sign up

Export Citation Format

Share Document