scholarly journals Interaction between entomopathogenic bacteria and their hosts

2021 ◽  
Author(s):  
◽  
Helena Vural

Photorhabdus and Xenorhabdus are Gram-negative, entomopathogenic bacteria, living in endosymbiosis with the soil-dwelling nematode of the genera Steinernema and Heterorhabditis. The life cycle of these nematodes consists of non-feeding infective juvenile (IJ) stage, which actively searches for insects in the soil. After penetrating the insect prey, Photorhabdus and Xenorhabdus bacteria are released from the nematode gut. The bacteria proliferate and produce toxins to kill the insect. Photorhabdus and Xenorhabdus support nematode development throughout the life cycle and to get rid of food competitors by providing a wide variety of specialized metabolites (SMs). However, little is known about which SMs function as so called “food signals” to trigger the development process. The IJs develop into adult, self-fertilizing hermaphrodites in a process called recovery, while feeding on cadaver and bacterial biomass. Heterorhabditis and Steinernema proceed to breed until nutrients are exhausted. Next generation IJs (NG-IJs) develop and leave the cadaver to search for another insect prey. Photorhabdus and Xenorhabdus can be cultivated in defined medium under laboratory conditions. By placing IJs on a plate containing their respective bacterial symbiont, the complete life cycle of the nematodes can be observed in vitro. The in vitro nematode bioassay was used as a tool to investigate the development of the nematode. The aim of this study was to find the food signals responsible for nematode development. Different Photorhabdus deletion strains unable to produce one or several SMs were co-cultivated with nematodes in the nematode bioassay. Subsequently, two aspects of the life cycle were investigated: recovery and NG-IJ development. As isopropyl stilbene (IPS) is postulated to function as a food signal to support nematode recovery, it was used as a starting point for investigations. This study was focused on the biosynthetic pathway of IPS, including intermediates, side products and derivatives to investigate which one is in fact responsible for supporting nematode development. The biosynthesis of IPS requires two precursors, phenylalanine and leucine (Figure 5). The first topic was focused on the phenylalanine derived pathway. Photorhabdus laumondii deletion mutants, defective in intermediate steps of this pathway, were created. The deletion of the genes coding for the phenylalanine ammonium lyase (stlA), converting phenylalanine into cinnamic acid (CA), the coenzyme A (CoA) ligase (stlB) and the operon coding for a ketosynthase and aromatase (stlCDE), were used. These strains were used for nematode bioassay including complementation of mutant phenotypes by feeding experiments. Recovery of nematodes grown on the deletion strains was always lower than recovery of nematodes grown on wild type bacteria. Feeding IPS to a deletion strain did not restore wild type level nematode recovery, thus IPS cannot be the food signal. Instead, the food signal must be another compound derived from this part of biosynthetic pathway. Lumiquinone and 2,5-dihydrostilbene are suggested to function as food signals and need to be investigated in future work. The second part of this study was focused on the leucine derived pathway, which involved the Bkd complex forming the iso-branched part of IPS. A deletion of bkd was created and phenotypically analysed, subsequently performed with the nematode bioassay. Not only IPS but also other branched SMs, like photopyrones and phurealipids are synthetised by the Bkd complex. Deletions strains defective in producing photopyrones and phurealipids were also performed in nematode bioassays to investigate effects of these SMs individually. Branched SMs did not have an impact on nematode development, but nematodes grown on the ΔbkdABC strain showed a reduced nematode recovery and almost diminished NG-IJs development. As the Bkd complex also produces branched chain fatty acids (BCFAs), feeding experiments were performed with lipid extracts of wild type and mutant strain. All lipid extracts improved recovery, but only wild type lipids could complement NG-IJ development. This strongly indicates that BCFAs play an important role in NG-IJ development, which needs to be proven with purified BCFA feeding. This is an interesting finding, which could improve nematode production for biocontrol agent usage. The role of IPS derived to epoxy stilbene (EPS) for nematode development, was another focus in the nematode life cycle. Recently it was demonstrated that EPS does not support nematode development. However, EPS forms adducts with amino acids. In my thesis, novel adducts containing the amino acid phenylalanine or a tetrapeptide were characterized. Another adduct, most likely being an EPS dimer, was also characterized. The biological role of such adducts was discussed to be potentially important for insect weakening and the structure of the novel compounds need to be structure elucidated and tested for bioactivity.

2000 ◽  
Vol 74 (23) ◽  
pp. 11388-11393 ◽  
Author(s):  
Peggy P. Li ◽  
Akira Nakanishi ◽  
Mary A. Tran ◽  
Adler M. Salazar ◽  
Robert C. Liddington ◽  
...  

ABSTRACT We have developed a new nonoverlapping infectious viral genome (NO-SV40) in order to facilitate structure-based analysis of the simian virus 40 (SV40) life cycle. We first tested the role of cysteine residues in the formation of infectious virions by individually mutating the seven cysteines in the major capsid protein, Vp1. All seven cysteine mutants—C9A, C49A, C87A, C104A, C207S, C254A, and C267L—retained viability. In the crystal structure of SV40, disulfide bridges are formed between certain Cys104 residues on neighboring pentamers. However, our results show that none of these disulfide bonds are required for virion infectivity in culture. We also introduced five different mutations into Cys254, the most strictly conserved cysteine across the polyomavirus family. We found that C254L, C254S, C254G, C254Q, and C254R mutants all showed greatly reduced (around 100,000-fold) plaque-forming ability. These mutants had no apparent defect in viral DNA replication. Mutant Vp1's, as well as wild-type Vp2/3, were mostly localized in the nucleus. Further analysis of the C254L mutant revealed that the mutant Vp1 was able to form pentamers in vitro. DNase I-resistant virion-like particles were present in NO-SV40-C254L-transfected cell lysate, but at about 1/18 the amount in wild-type-transfected lysate. An examination of the three-dimensional structure reveals that Cys254 is buried near the surface of Vp1, so that it cannot form disulfide bonds, and is not involved in intrapentamer interactions, consistent with the normal pentamer formation by the C254L mutant. It is, however, located at a critical junction between three pentamers, on a conserved loop (G2H) that packs against the dual interpentamer Ca2+-binding sites and the invading C-terminal helix of an adjacent pentamer. The substitution by the larger side chains is predicted to cause a localized shift in the G2H loop, which may disrupt Ca2+ ion coordination and the packing of the invading helix, consistent with the defect in virion assembly. Our experimental system thus allows dissection of structure-function relationships during the distinct steps of the SV40 life cycle.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 767
Author(s):  
Kamar Hamade ◽  
Ophélie Fliniaux ◽  
Jean-Xavier Fontaine ◽  
Roland Molinié ◽  
Elvis Otogo Nnang ◽  
...  

Lignans, phenolic plant secondary metabolites, are derived from the phenylpropanoid biosynthetic pathway. Although, being investigated for their health benefits in terms of antioxidant, antitumor, anti-inflammatory and antiviral properties, the role of these molecules in plants remains incompletely elucidated; a potential role in stress response mechanisms has been, however, proposed. In this study, a non-targeted metabolomic analysis of the roots, stems, and leaves of wild-type and PLR1-RNAi transgenic flax, devoid of (+) secoisolariciresinol diglucoside ((+) SDG)—the main flaxseed lignan, was performed using 1H-NMR and LC-MS, in order to obtain further insight into the involvement of lignan in the response of plant to osmotic stress. Results showed that wild-type and lignan-deficient flax plants have different metabolic responses after being exposed to osmotic stress conditions, but they both showed the capacity to induce an adaptive response to osmotic stress. These findings suggest the indirect involvement of lignans in osmotic stress response.


2021 ◽  
Vol 22 (4) ◽  
pp. 1825
Author(s):  
Li Hao ◽  
Aaron J. Marshall ◽  
Lixin Liu

Bam32 (B cell adaptor molecule of 32 kDa) functions in the immune responses of various leukocytes. However, the role of neutrophil Bam32 in inflammation is entirely unknown. Here, we determined the role of Bam32 in chemokine CXCL2-induced neutrophil chemotaxis in three mouse models of neutrophil recruitment. By using intravital microscopy in the mouse cremaster muscle, we found that transmigrated neutrophil number, neutrophil chemotaxis velocity, and total neutrophil chemotaxis distance were increased in Bam32−/− mice when compared with wild-type (WT) mice. In CXCL2-induced mouse peritonitis, the total emigrated neutrophils were increased in Bam32−/− mice at 2 but not 4 h. The CXCL2-induced chemotaxis distance and migration velocity of isolated Bam32−/− neutrophils in vitro were increased. We examined the activation of small GTPases Rac1, Rac2, and Rap1; the levels of phospho-Akt2 and total Akt2; and their crosstalk with Bam32 in neutrophils. The deficiency of Bam32 suppressed Rap1 activation without changing the activation of Rac1 and Rac2. The pharmacological inhibition of Rap1 by geranylgeranyltransferase I inhibitor (GGTI298) increased WT neutrophil chemotaxis. In addition, the deficiency of Bam32, as well as the inhibition of Rap1 activation, increased the levels of CXCL2-induced Akt1/2 phosphorylation at Thr308/309 in neutrophils. The inhibition of Akt by SH-5 attenuated CXCL2-induced adhesion and emigration in Bam32−/− mice. Together, our results reveal that Bam32 has a suppressive role in chemokine-induced neutrophil chemotaxis by regulating Rap1 activation and that this role of Bam32 in chemokine-induced neutrophil recruitment relies on the activation of PI3K effector Akt.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


2001 ◽  
Vol 21 (24) ◽  
pp. 8565-8574 ◽  
Author(s):  
Anthony J. Greenberg ◽  
Paul Schedl

ABSTRACT The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Paul White ◽  
Samuel F. Haysom ◽  
Matthew G. Iadanza ◽  
Anna J. Higgins ◽  
Jonathan M. Machin ◽  
...  

AbstractThe folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allen M Andres ◽  
Chengqun Huang ◽  
Eric P Ratliff ◽  
Genaro Hernandez ◽  
Pamela Lee ◽  
...  

Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia in vitro and IPC in hearts (in vivo and ex vivo) to investigate the role of Parkin in mediating cardioprotection. In HL-1 cells, simulated ischemia induced Parkin translocation to mitochondria and mitochondrial elimination. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports implicating p62/SQSTM1 in mitophagy, we found that downregulation of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to simulated ischemia. While wild type mice showed p62 translocation to mitochondria after IPC, Parkin knockout mice exhibited attenuated translocation of p62 to mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection.


1984 ◽  
Vol 26 (3) ◽  
pp. 386-389 ◽  
Author(s):  
Linda J. Reha-Krantz ◽  
Sükran Parmaksizoglu

The effect of temperature on genetically well-defined mutational pathways was examined in the bacteriophage T4. The mutational site was a T4 rII ochre mutant which could revert to rII+ via a transversion or to the amber convertant via a transition. Temperature did not strongly affect any of the pathways examined in a wild-type background; however, increased temperature reduced the mutational activity of a mutator DNA polymerase mutant. Possible models to explain the role of temperature in mutagenesis are discussed as well as the significance of low temperatures for in vitro mutagenesis reactions.Key words: bacteriophage T4, mutator, transition, transversion, temperature effects.


1990 ◽  
Vol 272 (3) ◽  
pp. 797-803 ◽  
Author(s):  
E S Gonos ◽  
J P Goddard

The role of a tRNA-like structure within the 5′-flanking sequence of a human tRNA(Glu) gene in the modulation of its transcription in vitro by HeLa cell extracts has been investigated using several deletion mutants of a recombinant of the gene which lacked part or all of the tRNA-like structure. The transcriptional efficiency of four mutants was the same as that of the wild-type recombinant, two mutants had decreased transcriptional efficiency, one was more efficient, and one, lacking part of the 5′ intragenic control region, was inactive. Correlation of the transcriptional efficiencies with the position and the size of the 5′-flanking sequence that was deleted indicated that the tRNA-like structure may be deleted without loss of transcriptional efficiency. Current models for the modulation of tRNA gene transcription by the 5′-flanking sequence are assessed in the light of the results obtained, and a potential model is presented.


Sign in / Sign up

Export Citation Format

Share Document