scholarly journals 759 PB 181 WATER AND HORMONAL INVOLVEMENT IN GROWTH AND DEVELOPMENT OF PEACH TREES UNDER ROOT RESTRICTION

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 541g-541
Author(s):  
Leonardo Alvarez ◽  
Caula A. Beyl

A greenhouse study was established to evaluate the effect of different levels of root restriction on morphology, hydraulic conductivity, root length, and t-zeatin and dihydrozeatin riboside levels in exudate in peach trees. One-year-old `Redhaven' peach on `Lovell' rootstock were grown for 18 weeks in containers with volumes ranging from 1.93 to 11.55 liters. Plants grown in the most restricted containers (1.93 to 3.85 L) had roots that were smaller and exhibited fewer primary and secondary branches with less average length. Final leaf, stem, root fresh and dry weight and root length were reduced in the highly restricted versus the less restricted treatments (7.7 and 11.55 L). Root hydraulic conductivity (Lp) was not affected by container volume. There was less dihydrozeatin riboside and trans-zeatin in exudate of the most restricted plants versus the less restricted ones. Cytokinin levels continued to decrease over the time course of treatment. Shootroot ratio was not altered by the container volume suggesting a coordination of root and shoot growth modulated by the container size.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 519a-519
Author(s):  
T. Caruso ◽  
F.P. Marra ◽  
A. Motisi ◽  
D. Giovannini

Length and distribution of the roots of 2-year old cv. `Flordaprince' peach trees grown under polyethylene greenhouse were studied over a two year period. The self-rooted, micropropagated trees were spaced 4.9 m between the row and 70, 52 and 42 cm. along the row to obtain a density of 3000, 4000 and 5000 trees/ha respectively. Orchard was clean cultivated, mulched along the row with black plastic fabric 1 m wide, and drip fertigated. Soon after harvest, for each density, the root system of one tree was totally excavated and root length, distribution, dry weight and nutrients content were determined. Total root length per tree was negatively related to planting density in two-year old trees (470, 380 and 320 m/tree respectively for 3000, 4000 and 5000 trees/ha). The shallowest root systems were found at 5000 trees/ha density and their length was unchanged from year to year. Root length density, ranging from 220 to 250 m/m), was only slightly affected by spacing in the two years. The roots were evenly distributed between the two sides of the rows.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 632f-633
Author(s):  
Kay Oakley ◽  
Robert Geneve ◽  
Sharon Kester ◽  
Myra Stafford

Root and shoot development in Marigold `Little Devil Flame' was studied after being grown for varying lengths of time in 392-count plugs before transplanting to six-pack cells. Seedlings were grown for 0, 5, 10, 15, 20, and 25 days before transplanting to six-packs. All plants were measured at day 25. There was no significant difference in total root length, area and dry weight per plant or in leaf area and shoot dry weight per plant for seedlings transplanted from 0 to 15 days. Both total root dry weight and total shoot dry weight of seedlings transplanted on day 20 was reduced by 32% compared to seedlings that were not transplanted. Total root dry weight of seedlings transplanted at day 25 was reduced by 60% while total shoot dry weight of seedlings was reduced by 56% from those not transplanted. In a separate experiment, the growth rate of seedlings grown in plugs was sigmoidal (r2 = 0.98). Growth rate was significantly reduced between 20 and 25 days in the plug. These results suggest that root restriction in the plug may be a factor in the reduction of seedling growth following transplanting.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 518b-518
Author(s):  
D. M. Glenn ◽  
W. V. Welker

The effect of ground covers on water uptake was studied using peach trees grown in a 4-part split root system. In 1992, one section of the root system was in bare soil and 3 sections were in combination with `K-31' tall fescue. In 1993, K-31 was eliminated in 2 additional sections, leaving 1 section in combination with `K-31'. When grass transpiration was suppressed by covering the K-31, tree water uptake/cm of root length was greater in the presence of grass compared to bare soil under well watered conditions. These data indicate that peach trees compensate for interspecific competition by increasing root hydraulic conductivity.


HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 494a-494 ◽  
Author(s):  
E. G. Rhoden ◽  
P. J. Ndolo ◽  
G. W. Carver

A greenhouse study was conducted to investigate the ability of sweetpotato (Ipomoea batatas), cv. `Centennial', `Rojo Blanco', `Georgia Jet' and `TI-82-155', fibrous roots to accumulate N, P, K, Ca and Mg. Sweetpotato plants were grown in a fritted clay medium and harvested 42 and 82 days after planting. Fibrous roots comprised 22 to 28.1% and 3.9 to 11.1% of the plant dry weight at 42 and 82 days after planting, respectively. There was no difference in the average root length/cm depth of soil among the four sweetpotato cultivars at day 42. While there was no difference in average root length among `Centennial', `Rojo Blanco' and `TI-82-155', these cultivars were significantly different from `Georgia Jet' at day 82. For the four cultivars, there were no significant differences in N, P, K, Mg and Ca Uptake at day 42, but each cultivar absorbed significantly more of each element 82 days after planting. `Georgia Jet' absorbed significantly more of the nutrients measured than the other cultivars, resulting in the highest dry matter yield. The data show that the efficient uptake and utilization of nutrients by sweetpotato are related to the amount of fibrous roots present.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 851D-851
Author(s):  
D.E. Deyton ◽  
C.E. Sams ◽  
J.C. Cummins ◽  
D.W. Lockwood

One-year-old peach trees in nurseries at McMinnville, Tenn., were exposed to –11C on 5 Nov. 1991 before digging. The nursery owners were concerned about the relationship of tree cambium browning to potential tree performance after planting. A color scale [0 = nondamage (white) to 6 = severely damaged (brown)] showing discolored cambium of peach nursery trees was developed to rate damage. Browning was rated at 8 cm above graft union. Five trees each of nine cultivars with chill hour requirements ranging from 175 to 1050 were rated. Cultivars with <500 chill hour requirement had higher ratings. Ten `Harbite' trees from each of six size grades were rated. Trees in grades of 30- to 90-cm height had less cambium browning than trees in grades of 90 to 152 cm height. In Dec. 1992, 1-year-old `Red Globe' trees were exposed to –6 (minimum field temperature), –15, –18, –24, –30, or –35C in a programmable freezer. A subsample of five trees per treatment was rated for browning 1 day after treatment and a second subsample rated in mid February. Trees in a third subsample were grown in a nursery the following summer. Slight browning (rating = 1.6) was evident soon after exposure to –24C; however, severe browning was evident on trees exposed to –30 or –35C. Trees exposed to temperature more than –24C did not differ in height, trunk diameter, or dry weight at the end of the growing season, however trees exposed to –30 or –35C did differ. In a similar experiment, `Juneprince' trees exposed to –18C had slight cambium browning (rating = 1.2) but trees died.


Author(s):  
Abdel-Rahman Mohamed ◽  
Abdel-Rahman M.A. Mohamed ◽  
Heba Sayed ◽  
Lidia Sas-Paszt ◽  
Augustyn Mika

One-year-old ‘Florida Prince’ cultivar (cv) peach trees grafted on a ‘Nemaguard’ rootstock were planted in the early spring of 2018 at the Centre of Agricultural Research and Experiments, Minia University, located in southwest Egypt. The trees were planted 5 × 5 m in a randomised complete block design with four replicates, with ten trees in each replicate. In the late spring, two different pruning systems were applied; traditional open centre (OC) and de-branched top trees (DBT). The OC trees were headed at 80 cm above the ground. DBT is a modification of the OC, but no heading was undertaken and the new shoot growth arising from the 20 cm at the top of the plant were removed. Before the winter pruning took place, measurements were taken on the upper two opposite branches. The average length and diameter values of the upper two opposite branches at the top of the trees trained to the OC were higher than those trained with the DBT. In contrast, the distance between the upper two branches (25 cm) at the top of the DBT trees was significantly higher. Likewise, the values of the crotch angles (48°) and the number of branches (81 of 100 branches) that showed desired crotch angles (more than 40°) were remarkably higher in the trees trained with the DBT. After the winter pruning took place, the DBT trees were higher than the OC trees. Additionally, the trees trained with the DBT had low pruning costs and took less time. Moreover, the pruning wood weight of the DBT trees was about half of the pruning wood weight of the OC trees. In conclusion, the DBT training system showed the desired impact on the crotch angles and the tested pruning characteristics.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1152f-1152
Author(s):  
Gregory L. Reighard

Eight rootstock cultivars of peach (Prunus persica) were grown for 3 months in a greenhouse and evaluated for vigor by measuring root hydraulic conductivity and recording stem caliper, shoot and root dry weights, and root lengths. These data were compared with tree diameter data from 3rd leaf `Redglobe' orchard trees budded on the same rootstock cultivars. The objective was to determine if rootstock seedling growth could be used as a predictor of scion vigor in the field. Correlations between orchard tree diameters and the stem calipers (r = 0.87), whole plant dry weights (r = 0.91), and root dry weights (r = 0.89) of greenhouse rootstock were statistically significant (P < 0.05), but not significant was the correlation between root length (r = 0.76) and tree diameter. Root hydraulic conductivity as measured with a pressure-induced water flux system at 0.4 MPa of pressure and calculated on both a root length and a root dry weight basis was inversely correlated with both the greenhouse and field data. This suggested that root hydraulic conductivity was a function of a pressure-mediated mechanism that was independent of root membrane permeability and xylem conductance.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Admas Alemu ◽  
Tileye Feyissa ◽  
Marco Maccaferri ◽  
Giuseppe Sciara ◽  
Roberto Tuberosa ◽  
...  

Abstract Background Genetic improvement of root system architecture is essential to improve water and nutrient use efficiency of crops or to boost their productivity under stress or non-optimal soil conditions. One hundred ninety-two Ethiopian durum wheat accessions comprising 167 historical landraces and 25 modern cultivars were assembled for GWAS analysis to identify QTLs for root system architecture (RSA) traits and genotyped with a high-density 90 K wheat SNP array by Illumina. Results Using a non-roll, paper-based root phenotyping platform, a total of 2880 seedlings and 14,947 seminal roots were measured at the three-leaf stage to collect data for total root length (TRL), total root number (TRN), root growth angle (RGA), average root length (ARL), bulk root dry weight (RDW), individual root dry weight (IRW), bulk shoot dry weight (SDW), presence of six seminal roots per seedling (RT6) and root shoot ratio (RSR). Analysis of variance revealed highly significant differences between accessions for all RSA traits. Four major (− log10P ≥ 4) and 34 nominal (− log10P ≥ 3) QTLs were identified and grouped in 16 RSA QTL clusters across chromosomes. A higher number of significant RSA QTL were identified on chromosome 4B particularly for root vigor traits (root length, number and/or weight). Conclusions After projecting the identified QTLs on to a high-density tetraploid consensus map along with previously reported RSA QTL in both durum and bread wheat, fourteen nominal QTLs were found to be novel and could potentially be used to tailor RSA in elite lines. The major RGA QTLs on chromosome 6AL detected in the current study and reported in previous studies is a good candidate for cloning the causative underlining sequence and identifying the beneficial haplotypes able to positively affect yield under water- or nutrient-limited conditions.


1994 ◽  
Vol 8 (4) ◽  
pp. 840-848 ◽  
Author(s):  
Chester L. Foy ◽  
Susan B. Harrison ◽  
Harold L. Witt

Field experiments were conducted at two locations in Virginia to evaluate the following herbicides: alachlor, diphenamid, diuron, metolachlor, napropamide, norflurazon, oryzalin, oxyfluorfen, paraquat, pendimethalin, and simazine. One experiment involved newly-transplanted apple trees; the others, three in apple and one in peach trees, involved one-year-old trees. Treatments were applied in the spring (mid-April to early-May). Control of annual weed species was excellent with several treatments. A broader spectrum of weeds was controlled in several instances when the preemergence herbicides were used in combinations. Perennial species, particularly broadleaf species and johnsongrass, were released when annual species were suppressed by the herbicides. A rye cover crop in nontreated plots suppressed the growth of weeds. New shoot growth of newly-transplanted apple trees was increased with 3 of 20 herbicide treatments and scion circumference was increased with 11 of 20 herbicide treatments compared to the nontreated control. Growth of one-year-old apple trees was not affected. Scion circumference of one-year-old peach trees was increased with 25 of 33 herbicide treatments.


Sign in / Sign up

Export Citation Format

Share Document