scholarly journals Genetic Analysis of Salt Tolerance during Vegetative Growth in Tomato

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 624b-624
Author(s):  
M.R. Foolad

Breeding for salt tolerance in tomato (Lycopersicon esculentum Mill.) has been restricted by insufficient knowledge of the genetic control of tolerance. The genetic basis of salt tolerance during vegetative growth was investigated by growing a salt tolerant (PI174263) and a salt sensitive tomato cultivar (UCT5) and their F1, F2, and backcross progeny in saline solutions with electrical conductivity of 0.5 (control) and 20 dS·m–1 (salt-stress). The relative salt tolerance of each generation was determined as the percentage of growth (i.e., dry matter production) under salt-stress relative to growth under control conditions. In all generations, shoot growth was significantly reduced by salt-stress. The reduction was largest in UCT5 (56.1%) and smallest in the F1 (27.4%) followed by PI174263 (32.3%). Analysis of the absolute and relative growth under salt-stress indicated that genes contributing to vigor might be different from genes conferring tolerance. Generation means analyses of the absolute and relative growth indicated that the majority of the genetic variation among generations were due to simple (additive and dominance) genetic effects; nonallelic interactions, although significant, were far less important. Partitioning of the total genetic variance by weighted least square regression analysis and variance component analysis indicated that 88% or more of the variation were due to additive genetic effects. A moderate estimate of narrow sense heritability (0.49 ± 0.09) was obtained for shoot dry weight under salt-stress treatment. The results indicate that tomato salt tolerance during vegetative growth can be improved by breeding and selection.

Biologia ◽  
2015 ◽  
Vol 70 (10) ◽  
Author(s):  
Karima H. A. Salama ◽  
Mohamed Magdy Mansour ◽  
Habebah A. Al-Malawi

AbstractSalinity stress is one of the most serious environmental factors limiting plant growth and productivity in large areas around the world. Priming approach was adopted to study the effect of glycinebetaine (GB) on enhancing salt tolerance of sensitive wheat cultivar (Gomeza 7). The caryopsis were primed in different concentrations of GB (25, 50, 100 mM) for 24 h, and then treated with or without 150 mM NaCl added to 1/4-modified Hoagland solution (MHS). The NaCl treatment lasted 38 d under natural environmental conditions. Salt stress reduced all growth parameters measured: fresh mass, dry mass, relative growth rate, for the shoots and roots, and relative water content (RWC). Salt imposition increased the level of Na


2016 ◽  
Vol 13 (1) ◽  
pp. 94-100
Author(s):  
M A Latif ◽  
M Robbani ◽  
K Akhter

A pot experiment was conducted during March 2012 to February 2013 to evaluate the salt tolerance of drumstick (Moringa sp.) genotypes in a factorial split plot design. Two factors, water salinity was assigned in the main plot with 4 levels (control, 7, 10 and 13 dS/m) and10 drumstick genotypes of Bangladesh (Acc. no. 1 to Acc. no. 10) in the sub-plot with 3 replications. The data were collected for the vegetative growth, percent alive cuttings and necrosis and chlorosis of leaves on the 12thmonth of the study. The results indicated that the Acc. no. 4 from Satkhira and the Acc. no.  5 from Khulna were the best in all respects even at 10 dS/m salinity level. The results also revealed that most of the genotypes performed more or less well up to the 7 dS/m salinity but none at the 13 dS/m. No genotype showed sensitivity to the lowest salinity level. In addition, The highest concentration of total Na+ and Cl-  were observed in the shoots and the leaves of the Acc. no. 5 and Acc. no. 9 at 13 dS/m salinity level as well.The Agriculturists 2015; 13(1) 94-100


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1487
Author(s):  
Yan Xie ◽  
Xiaoying Liu ◽  
Maurice Amee ◽  
Hua Yu ◽  
Ye Huang ◽  
...  

Soil salinity is one of the major abiotic stresses that continues to threaten plant growth and agricultural productivity. Screening germplasm with salinity tolerance is therefore necessary. This study was designed to evaluate salt tolerance based on the integrated tolerance index. Fifteen Italian ryegrass cultivars were used to evaluate the degree of genotypic variation in salt tolerance at the germination and vegetative growth stages of plant development. Evident variations in salt tolerance were observed at the germination stage under 255 mM NaCl treatment. Root growth rate, chlorophyll content, and germination rates played a vital role in determining salt tolerance. Based on combined attributes at the germination and vegetative growth stages, Gongniu, Chuangnong, Splendor, and Abundant were identified as the most tolerant cultivars. Furthermore, the constant crude protein, lower neutral detergent fiber, and acid detergent fiber contents were measured under salinity. Compared to the control, the cultivars Tetragold, Abundant, Splendor, Muyao, Harukaze, Tegao, Dongmu 70, and Doraian were identified to have high forage quality under salt stress. Finally, we selected Splendor and Abundant as the cultivars that expressed the highest degree of salt tolerance based on combined attributes related to germination, salt tolerance, and overall forage quality. In addition, gene expression analysis between salinity tolerant and sensitive cultivars revealed that the gene response to photosystem and carbohydrate synthesis may have played a mediating role in providing tolerance to salt stress.


2018 ◽  
Vol 35 (0) ◽  
Author(s):  
A.S.A.S. SHAIKHA ◽  
S.S.A.S. SHAMSA ◽  
A.R. GABRIEL ◽  
S.S. KURUP ◽  
A.J. CHERUTH

ABSTRACT: An investigation was carried out to estimate the NaCl stress and ameliorative effects of Gibberellic Acid (GA3) on Portulaca grandiflora Hook. A crop experiment was conducted (CRBD) where all the pots were irrigated to field capacity. The treatments were given as (T0) control without NaCl, (T1) 80 mM NaCl, (T2) 80 mM NaCl and 50 ppm GA3, (T3) 80 mM NaCl and 75 ppm GA3 and (T4) 80 mM NaCl and 100 ppm GA3. The samples were collected at 90 DAS. It was found that plants subjected to salt stress generally showed a reduction of vegetative growth. GA3 spraying on Portulaca grandiflora with 75 ppm showed a high amelioration effect on growth and on biochemical patterns, which enhanced salt tolerance. In Portulaca grandiflora, data showed that NaCl stress inhibited fresh and dry weight and further introduced significant deviation on some biochemical parameters. However, GA3 partially ameliorated growth and some biochemical parameters of Portulaca grandiflora under NaCl stress.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gustavo Cebrián ◽  
Jessica Iglesias-Moya ◽  
Alicia García ◽  
Javier Martínez ◽  
Jonathan Romero ◽  
...  

AbstractAbiotic stresses have a negative effect on crop production, affecting both vegetative and reproductive development. Ethylene plays a relevant role in plant response to environmental stresses, but the specific contribution of ethylene biosynthesis and signalling components in the salt stress response differs between Arabidopsis and rice, the two most studied model plants. In this paper, we study the effect of three gain-of-function mutations affecting the ethylene receptors CpETR1B, CpETR1A, and CpETR2B of Cucurbita pepo on salt stress response during germination, seedling establishment, and subsequent vegetative growth of plants. The mutations all reduced ethylene sensitivity, but enhanced salt tolerance, during both germination and vegetative growth, demonstrating that the three ethylene receptors play a positive role in salt tolerance. Under salt stress, etr1b, etr1a, and etr2b germinate earlier than WT, and the root and shoot growth rates of both seedlings and plants were less affected in mutant than in WT. The enhanced salt tolerance response of the etr2b plants was associated with a reduced accumulation of Na+ in shoots and leaves, as well as with a higher accumulation of compatible solutes, including proline and total carbohydrates, and antioxidant compounds, such as anthocyanin. Many membrane monovalent cation transporters, including Na+/H+ and K+/H+ exchangers (NHXs), K+ efflux antiporters (KEAs), high-affinity K+ transporters (HKTs), and K+ uptake transporters (KUPs) were also highly upregulated by salt in etr2b in comparison with WT. In aggregate, these data indicate that the enhanced salt tolerance of the mutant is led by the induction of genes that exclude Na+ in photosynthetic organs, while maintaining K+/Na+ homoeostasis and osmotic adjustment. If the salt response of etr mutants occurs via the ethylene signalling pathway, our data show that ethylene is a negative regulator of salt tolerance during germination and vegetative growth. Nevertheless, the higher upregulation of genes involved in Ca2+ signalling (CpCRCK2A and CpCRCK2B) and ABA biosynthesis (CpNCED3A and CpNCED3B) in etr2b leaves under salt stress likely indicates that the function of ethylene receptors in salt stress response in C. pepo can be mediated by Ca2+ and ABA signalling pathways.


2014 ◽  
Vol 37 (9) ◽  
pp. 839-850 ◽  
Author(s):  
Jia-Hui LU ◽  
Xin LÜ ◽  
Yong-Chao LIANG ◽  
Hai-Rong LIN

HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 296-300 ◽  
Author(s):  
M.R. Foolad ◽  
G.Y. Lin

Seed of 42 wild accessions (Plant Introductions) of Lycopersicon pimpinellifolium Jusl., 11 cultigens (cultivated accessions) of L. esculentum Mill., and three control genotypes [LA716 (a salt-tolerant wild accession of L. pennellii Corr.), PI 174263 (a salt-tolerant cultigen), and UCT5 (a salt-sensitive breeding line)] were evaluated for germination in either 0 mm (control) or 100 mm synthetic sea salt (SSS, Na+/Ca2+ molar ratio equal to 5). Germination time increased in response to salt-stress in all genotypes, however, genotypic variation was observed. One accession of L. pimpinellifolium, LA1578, germinated as rapidly as LA716, and both germinated more rapidly than any other genotype under salt-stress. Ten accessions of L. pimpinellifolium germinated more rapidly than PI 174263 and 35 accessions germinated more rapidly than UCT5 under salt-stress. The results indicate a strong genetic potential for salt tolerance during germination within L. pimpinellifolium. Across genotypes, germination under salt-stress was positively correlated (r = 0.62, P < 0.01) with germination in the control treatment. The stability of germination response at diverse salt-stress levels was determined by evaluating germination of a subset of wild, cultivated accessions and the three control genotypes at 75, 150, and 200 mm SSS. Seeds that germinated rapidly at 75 mm also germinated rapidly at 150 mm salt. A strong correlation (r = 0.90, P < 0.01) existed between the speed of germination at these two salt-stress levels. At 200 mm salt, most accessions (76%) did not reach 50% germination by 38 days, demonstrating limited genetic potential within Lycopersicon for salt tolerance during germination at this high salinity.


2016 ◽  
Vol 3 (2) ◽  
Author(s):  
SHAILESH CHAND GAUTAM ◽  
MP Chauhan

Line × tester analysis of twenty lines and three testers of Indian mustard (Brassica juncea L. Czern & Coss.) cultivars were used to estimate general combining ability (GCA), specific combining ability (SCA) effects, high parent heterosis and narrow-sense heritability estimate for plant height, yield components and seed yield. Significant variance of line x tester for the traits like pods per plant and seed yield indicating non additive genetic effects have important role for controlling these traits. Significant mean squares of parents v/s crosses which are indicating significant average heterosis were also significant for all the traits except seeds per pod. High narrow-sense heritability estimates for all the traits except seeds per pod exhibited the prime importance of additive genetic effects for these traits except seeds per pod. Most of the crosses with negative SCA effect for plant height had at least one parent with significant negative or negative GCA effect for this trait. For most of the traits except pods per plant, the efficiency of high parent heterosis effect was more than SCA effect for determining superior cross combinations.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1312
Author(s):  
Jia Liu ◽  
Weicong Qi ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
Dayong Zhang

Salt tolerance is an important trait in soybean cultivation and breeding. Plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. Plasma membrane intrinsic proteins (PIPs) localize to the plasma membrane and regulate the water and solutes flow. In this study, quantitative real-time PCR and yeast two-hybridization were engaged to analyze the early gene expression profiles and interactions of a set of soybean PIPs (GmPIPs) in response to salt stress. A total of 20 GmPIPs-encoding genes had varied expression profiles after salt stress. Among them, 13 genes exhibited a downregulated expression pattern, including GmPIP1;6, the constitutive overexpression of which could improve soybean salt tolerance, and its close homologs GmPIP1;7 and 1;5. Three genes showed upregulated patterns, including the GmPIP1;6 close homolog GmPIP1;4, when four genes with earlier increased and then decreased expression patterns. GmPIP1;5 and GmPIP1;6 could both physically interact strongly with GmPIP2;2, GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. Definite interactions between GmPIP1;6 and GmPIP1;7 were detected and GmPIP2;9 performed homo-interaction. The interactions of GmPIP1;5 with GmPIP2;11 and 2;13, GmPIP1;6 with GmPIP2;9, 2;11 and GmPIP2;13, and GmPIP2;9 with itself were strengthened upon salt stress rather than osmotic stress. Taken together, we inferred that GmPIP1 type and GmPIP2 type could associate with each other to synergistically function in the plant cell; a salt-stress environment could promote part of their interactions. This result provided new clues to further understand the soybean PIP–isoform interactions, which lead to potentially functional homo- and heterotetramers for salt tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huanyong Li ◽  
Xiaoqian Tang ◽  
Xiuyan Yang ◽  
Huaxin Zhang

AbstractNitraria sibirica Pall., a typical halophyte that can survive under extreme drought conditions and in saline-alkali environments, exhibits strong salt tolerance and environmental adaptability. Understanding the mechanism of molecular and physiological metabolic response to salt stress of plant will better promote the cultivation and use of halophytes. To explore the mechanism of molecular and physiological metabolic of N. sibirica response to salt stress, two-month-old seedlings were treated with 0, 100, and 400 mM NaCl. The results showed that the differentially expressed genes between 100 and 400 mmol L−1 NaCl and unsalted treatment showed significant enrichment in GO terms such as binding, cell wall, extemal encapsulating structure, extracellular region and nucleotide binding. KEGG enrichment analysis found that NaCl treatment had a significant effect on the metabolic pathways in N. sibirica leaves, which mainly including plant-pathogen interaction, amino acid metabolism of the beta alanine, arginine, proline and glycine metabolism, carbon metabolism of glycolysis, gluconeogenesis, galactose, starch and sucrose metabolism, plant hormone signal transduction and spliceosome. Metabolomics analysis found that the differential metabolites between the unsalted treatment and the NaCl treatment are mainly amino acids (proline, aspartic acid, methionine, etc.), organic acids (oxaloacetic acid, fumaric acid, nicotinic acid, etc.) and polyhydric alcohols (inositol, ribitol, etc.), etc. KEGG annotation and enrichment analysis showed that 100 mmol L−1 NaCl treatment had a greater effect on the sulfur metabolism, cysteine and methionine metabolism in N. sibirica leaves, while various amino acid metabolism, TCA cycle, photosynthetic carbon fixation and sulfur metabolism and other metabolic pathways have been significantly affected by 400 mmol L−1 NaCl treatment. Correlation analysis of differential genes in transcriptome and differential metabolites in metabolome have found that the genes of AMY2, BAM1, GPAT3, ASP1, CML38 and RPL4 and the metabolites of L-cysteine, proline, 4-aminobutyric acid and oxaloacetate played an important role in N. sibirica salt tolerance control. This is a further improvement of the salt tolerance mechanism of N. sibirica, and it will provide a theoretical basis and technical support for treatment of saline-alkali soil and the cultivation of halophytes.


Sign in / Sign up

Export Citation Format

Share Document