scholarly journals Monitoring Chemical Properties of Growing Media with Small Soil Solution Samplers

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 546E-546
Author(s):  
Raul I. Cabrera ◽  
Pedro Perdomo

Hydrophilic polymer tubes (2.5 mm OD, 1.4 mm ID, 10-cm length, 0.1-mm pore diameter) attached to PVC hose were used to extract solution from soilless media at container capacity and analyzed for pH, EC, NO3-N and NH4-N. Media chemical properties were also analyzed by the Saturated Media Extract (SME) and Pour-Through (PT) methods. Extraction and analyses were conducted in peat: vermiculite (PV) and peat: perlite (PP) media irrigated for 1 week with Hoagland solution at 0.25, 0.5, 1, 2 and 4x. A 10-mL syringe was used as the vacuum source (48.1 ± 0.5 kPa) for the solution samplers (SS), yielding ≈2–5 mL of solution over a 3-min period. Simple correlation coefficients for EC, NO3-N and NH4-N between SS and SME and PT were high (>0.99). When measured by PT, these chemical properties were similar to SS (within 1% to 6%), whereas SME values were much lower than SS (12% to 15% and 35% to 38% in PV and PP media, respectively). Correlation coefficients for pH were lower than in other chemical properties, particularly in the PV medium. With an estimated life of ≈6 months in soil, SS are excellent monitoring tools for mineral nutrition research and horticultural crop production.

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 536
Author(s):  
James E. Altland

The pour-through procedure is a nondestructive method commonly used by horticultural crop producers and research scientists to measure chemical properties and nutrient availability in container substrates. It is a method that uses water as a displacement solution to push the substrate solution out of the bottom of the container so it can be analyzed for pH, electrical conductivity, and nutrient concentrations. The method was first introduced in the early 1980s. Since then, research has been conducted to determine factors that affect the results of the pour-through including volume, nature and timing of application of the displacement solution, container size, and substrate stratification. It has also been validated against other common methods for determining container substrate pH, EC, and nutrient concentration, most notably the saturated media extraction procedure. Over the past 40 years, the method has been proven to be simple, robust, and consistent in providing crop producers and researchers valuable information on substrate chemical properties from which management decisions and experimental inferences can be made.


2021 ◽  
Vol 58 (3) ◽  
pp. 354-361
Author(s):  
Mitali Mandal ◽  
Narayan Panda ◽  
Prasanta Kumar Patra

Understanding the relationship between soil properties and grain yield and yield related traits is an important objective in crop production programme. The purpose of this study was to evaluate maintenance of soil health in terms of soil chemical properties in relation to rice yield using multivariate analytical methods. Canonical correlation analysis is one of the most popular multivariate analysis techniques to estimate dependent relationship between soil properties with grain yield and yield attributing characters .In this study, five canonical correlation coefficients ( CCCs) were estimated and the first three of them were significant( R1: 1, R2: 0.99 and R3: 0.84, p<0.001).The findings obtained from the CCA indicate that available N, available Cu and Zn in soil and N content in grain had the largest contribution for the explanatory capacity of canonical variables estimated from grain yield, straw yield, number of panicles/m2 and filled grains / panicle.


2019 ◽  
Vol 4 (3) ◽  
pp. 309-316
Author(s):  
Ruslan MUDRAK

Introduction. The intensification of globalization processes that characterize the beginning of the new millennium has led to the emergence of supranational structures of regional and global scope. The deepening of Ukraine's integration into the international trading space causes new opportunities and threats. The relatively large size of the territory of Ukraine as a European state and its administrative structure causes a number of differences in the socio-economic development of its regions. Identifying regional differences in foreign trade in agri-food products and their causes is an urgent task of the study, given the leading role of the agro-industrial sector in Ukraine's foreign trade. The aim of the study is to identify regional differences of foreign trade in agri-food products and identify their causes. Results of work. The analysis results of foreign trade in agro-food products on the average for 2016-2018 by regions are given. It is determined that the four leading export regions are Mykolaiv, Odesa, Kyiv and Vinnytsia, as they account for about 47,9 %. The regions were evaluated according to the following indicators: the volume of regional exports, the volume of production of cereals and legumes, the production of sunflower seeds. According to the results of the analysis, each region was assigned a corresponding rank, on the basis of the values of which the correlation coefficients of the regions ranks were calculated. It is determined that there is a close link between the region's place in the national agri-food export ratings and the production of cereals and legumes; and there is a median link between the region's place in the national agri-food export and sunflower seed ratings. Imports of agro-food products by regions are considered, where Kiev region is the absolute leader, which together with Odessa, Lviv and Dnipropetrovsk regions have 64.5 % of all corresponding imports. The analysis of agro-food products import by groups of goods is presented. The regions ranking by import volumes of agri-food products and disposable income per person has been done. The obtained coefficient of correlation of ranks testifies to the average degree of relation close to high. Conclusions. It is proved that the differences in the volumes of crop production mainly cereals, legumes and sunflower are the basis for regional differentiation of agricultural food exports, which testifies to the raw nature of exports, stagnation of livestock and unsatisfactory development of the domestic food industry. Differentiation of imports of agro-industrial products is caused by the difference in income of the population by regions. Keywords: agro-food products, export, import, balance, production, raw materials, processing, disposable income.


2016 ◽  
Author(s):  
Abdulaha-Al Baquy ◽  
Jiu-Yu Li ◽  
Chen-Yang Xu ◽  
Khalid Mehmood ◽  
Ren-Kou Xu

Abstract. Soil acidity has become a serious constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. Regardless of other common existing concerns in acidic Ultisols of southern China, it needs to be investigated whether soil acidity has any effect on wheat and canola growth. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study was to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui were conducted for wheat and canola crops in a controlled growth chamber, with a completely randomized design. A soil pH gradient ranging from 3.7 (Hunan) and 3.97 (Anhui) to 6.5, with three replications, was used as a treatment. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg−1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 2.36 cmol kg−1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.


2021 ◽  
Vol 8 (1) ◽  
pp. 79-88
Author(s):  
Md. Nasir Uddin ◽  
S. M. Mahbub Ali ◽  
Md. Abu Sadat ◽  
Md Amazed Hossain Chowdhury ◽  
Israt Jahan Mumu ◽  
...  

Seed plays an important role in agricultural sector for both production and consumption purpose. Availability of vigour seed is one of the major constraints for maximizing crop production. However, healthy seed can also lose its viability during seed storage by changing different physio-chemical properties. Influence of environmental factors and seed containers during storage leading to seed deterioration. In this research, mid storage seed hardening treatment was applied in different aged seeds of jute species (C. Capsularis & C. olitorius) with two types of storage bags. Seed hardening treatment showed the less moisture content with better germination percentage compared to the untreated species of jute seeds. Seed packing in polythene bags during both short and long term seed storages had higher viable seeds compared to the cloth packing seeds. The effect of seed hardening treatment on seed oil content and pattern of oil degradation is distinct in early period of storage. The faster rate of oil degradation, soluble protein and free amino acids was found in seeds of un-treated stored seeds in cloth bag. Contrary, very slow rate of oil degradation was observed in harden seed and stored in polythene bag which indicated better storability of harden seeds.


Author(s):  
M. A. Adejumobi

Soil is used in agriculture as an anchor and primary nutrient base for plants, and the types of soil and available moisture determine the species of plants that can be cultivated. Bush burning, whether as result of a wildfire or a controlled burning, affects not only the appearance of the landscape, but the quality of the soil. Bush burning method of land clearing is a traditional farming system used as a means of land clearing for crop production. This method of land clearing has both beneficial and detrimental effects on soil physical and chemical properties. Therefore, this study investigated the effects of bush burning on soil chemical properties at different soil depth of 0-30 cm and 30-60 cm respectively base on the rooting depth of crop planted. The experiment was carried out in six selected farms in Igboora, Ibarapa central Local Governmental, Oyo State. The soil sampled were collected from burnt and unburnt experimental soil and analyzed using USDA standard methods for soil analysis for the selected chemical characteristics (pH, Ca2+, Mg2+ Na+. TN and P). Two samples were taken from each burnt and un-burnt locations at depth of 0-30 and 30-60 cm. Paired t-test was used to compare means value of soil chemical properties determined from burnt and un-burnt soil. ANOVA was used for significance difference between soil from burnt and un-burnt soil. pH increased from moderately acidic to slightly acidic, phosphorus content of the soil increased greatly from un-burnt soil to burnt soil at 0-30 cm and 30-60 cm depths from 6.64 to 22.21 ppm and 3.53 to 24.95 ppm, respectively. Similarly, potassium increased from 0.27 to 0.40ppm at 0-30cm depth but decreased from 0.23 to 0.17 ppm at 30-60 cm depth. Nitrogen reduced at both depths from 0.80 to 0.76% and 0.72 to 0.68% respectively. Magnesium also increased from 1.3 cmol/kg to 2.00 cmol/kg and 1.65 to 1.75 cmol/kg at both 0-30 cm and 30-60 cm depth respectively. Whereas calcium showed a reduction from 3.17 to 2.85 cmol/kg and 1.65 to 1.45 cmol/kg at both depths. The variations observed between burnt and un-burnt soil for Ca, Mg, exchangeable acidity, pH, Nitrogen, potassium was significant at p<0.05 probability level. This indicates that bush burning has an impact on soil physical and chemical properties which may affect the suitability of the soil for crop production. Based on this, there is need for environmental education for farmers in the area in order to know the implications of bush burning on soil properties for soil sustainability which will boost food production.


Author(s):  
Esther Mwende Muindi

Liming and phosphorus (P) applications are recommended practices for improving crop production in acid soils of the tropics. Although considerable work has been done to establish liming rates for acid soils in many parts of the world, information on the effects of lime on the forms of aluminium which actively sorb P in such soils is minimal. A greenhouse pot experiment was conducted at Waruhiu Farmers Training Centre, Githunguri to evaluate the effect of liming on oxalate and dithionate extractable aluminium in acid soils. Extremely (pH 4.48) and strongly (pH 4.59) acidic soils were evaluated. Four liming (CaO) rates namely 0, 2.2, 5.2 and 7.4 tonnes ha-1 for extremely acidic and 0, 1.4, 3.2, and 4.5 tonnes ha-1 for  strongly acidic soils were evaluated. The experiment was laid out in a Randomized Complete Block Design (RCBD) and replicated three times. Data collected included: initial soil chemical properties, oxalate (Alo) and dithionate (Ald) aluminium levels. The tested soils had high exchangeable Al (> 2 cmol Al kg-1), Al saturation of (> 20% Al) and low extractable P values (< 15 mg P kg-1 soil). Liming significantly (p=.05) reduced Alo by 70% and 68% in extremely and strongly acidic soils respectively and Ald by 78% in both extremely and strongly acidic soils compared to control. Use of 7.4 tonnes ha-1 of lime in extremely acidic soils and 4.5 tonnes ha-1 of lime in strongly acidic soils significantly (p=.05) reduced both Alo and Ald by > 68% compared to no lime. It was, therefore, concluded that liming contributes to the reduction of soluble Alo and Ald in acid soils of the Kenya highlands leading to increased soluble P availability. Studies are required to provide short and long term optimal liming rates that reduce Alo and Ald without distabilizing availability of other nutrients in field conditions under wide range of acid soils.


Author(s):  
Bimesh Dahal

There are many management methods for nutrient which can be specifically applied in farming systems. Integrated nutrient management (INM) generally denotes the combined use of organic and chemical fertilizers for producing crops in a sustainable manner and to maintain soil fertility as well as to supply nutrient in appropriate amount which consider social, ecological and economic impacts. This paper shows the importance and need of INM in agriculture production. Also, the relation of INM and yield attributes are analyzed and evaluated including growth and physical attributes of cowpea. The status of nutrient uptake by plant is also described along with other physical and chemical properties of soil. Finally, this paper also describes about the biofertilizer and its relation, impact and effect on crop production which can be used as a improved technology with the combination of other nutrient management practices.


2020 ◽  
Vol 53 (1) ◽  
pp. 1
Author(s):  
Mohsen Jalali ◽  
Maryam Saeedi Lotf ◽  
Faranak Ranjbar

<p>Salinization and sodification of agricultural lands in arid and semi-arid regions of the world are two limiting factors in the crop production. This study was conducted to evaluate the effect of readily available agricultural residues on changing some chemical properties of saline-sodic soils. Wheat, potato, sunflower, and canola residues were separately added into three saline-sodic soils at a rate of 2% by weight and thoroughly mixed with soils. Control and treated soils were incubated for 168 days at a constant moisture and temperature. The pH, electrical conductivity (EC), soluble cations, available nitrate (NO3-) and phosphorous (P), cation exchange capacity (CEC), and exchangeable sodium percentage (ESP) were measured during the incubation. The EC increased in the response to the incorporation of plant residues, whereas the pH was reduced. The application of organic components in soils increased CEC and decreased ESP. The results showed that the maximum reduction in ESP was observed in the potato treatment because of the highest Ca2+ concentration. The average reduction in ESP of treated soil samples at the end of incubation followed this order: 16.1% (potato residue-treated soil) &gt;12.7% (canola residue-treated soil) &gt;11.1% (wheat residue-treated soil) &gt;9.6% (sunflwer residue-treated soil). The potato residue was the most effective amendment in changing the chemical properties of saline-sodic soils in comparison with other organic residues. The results indicated that the application of organic residues had a positive impact on reducing the soil sodicity and improving the soil fertility depending on their chemical composition.</p>


1982 ◽  
Vol 62 (4) ◽  
pp. 1049-1055 ◽  
Author(s):  
A. K. SHARMA ◽  
R. T. BERG

Relationships of scrotal circumference (SC) with body weight (BW) and backfat thickness (FT) as measured from scanograms were studied. A total of 935 observations on growing multibreed synthetic beef bulls on a postweaning performance test were available from a commercial herd for this study. Significant breed group, period and group × period interaction effects were noted on SC, BW and FT. BW and SC increased significantly during the test in all breed groups, while FT showed no change in three breed groups. Repeatability pooled across groups for SC was estimated as 0.72; 0.66 after adjusting for BW. Significant correlations were noticed between SC and BW within each breed group. Partial correlations between SC and BW at constant FT were not different from gross correlations. Linear regression coefficients of SC on BW were significant in all groups and showed heterogeneity among groups but not between periods within groups. Adjustments of SC for BW should, therefore, be breed group specific. BW alone accounted for considerable variation in SC, from 38 to 76%. Simple correlation coefficients between SC and FT were low and significant in only two groups. A significant but low positive relationship was noted between SC and FT at constant BW in a group fed a high-concentrate diet during the postweaning gain period, but there was no relationship in four other groups. Results indicated that the method of adjusting SC for FT as an indirect way of adjusting for scrotal fat was not satisfactory. Key words: Bulls, scrotal circumference, growth


Sign in / Sign up

Export Citation Format

Share Document