scholarly journals Waterlogging Tolerance of Kentucky Bluegrass Cultivars

HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 386-390 ◽  
Author(s):  
Kehua Wang ◽  
Yiwei Jiang

Waterlogging (WL) affects the growth and physiological responses of turfgrass. The objectives of this study were to compare the relative WL tolerance of Kentucky bluegrass (Poa pratensis L.) cultivars and to investigate the physiological responses of shoots and roots to WL. Ten cultivars differing in growth habit were subjected to 30 d of WL. The turf quality (TQ) and soil redox potential (Eh), as well as the chlorophyll concentration (Chl), decreased with increasing periods of WL. Among all cultivars, root dry weight (RDW) decreased 16.7% to 39.9% under 10 d and 30.0% to 60% under 30 d of WL, respectively. Waterlogging increased the root electrolyte leakage (REL) from 0.6% to 53.2% under 10 d and from 29.1% to 98.0% under 30 d of WL for all cultivars, respectively. The best correlations were observed between Eh and TQ (r = 0.74), REL and TQ (r = 0.75), RDW and root water-soluble carbohydrate content (RWSC) (r = 0.74), and root oxidase activity and RWSC (r = 0.63), respectively. ‘Moonlight’, ‘Serene’, and ‘Champagne’ showed better tolerance to short-term WL conditions, whereas ‘Kenblue’ and ‘Eagleton’ were the least tolerant cultivars. ‘Limousine’, ‘Unique’, ‘Awesome’, ‘Julia’, and ‘Midnight II’ ranked in the middle group. Variations in WL tolerance among Kentucky bluegrasses could potentially be used for enhancing turfgrass management.

2008 ◽  
Vol 18 (1) ◽  
pp. 139-143 ◽  
Author(s):  
Lie-Bao Han ◽  
Gui-Long Song ◽  
Xunzhong Zhang

Traffic stress causes turfgrass injury and soil compaction but the underlying physiological mechanisms are not well documented. The objectives of this study were to investigate the physiological responses of kentucky bluegrass (Poa pratensis), tall fescue (Festuca arundinacea), and japanese zoysiagrass (Zoysia japonica) to three levels of traffic stress during the growing season under simulated soccer traffic conditions. Relative leaf water content (LWC), shoot density, leaf chlorophyll concentration (LCC), membrane permeability, and leaf antioxidant peroxidase (POD) activity were measured once per month. The traffic stress treatments caused a reduction in LWC, shoot density, LCC, and POD activity, and an increase in cell membrane permeability in all three species. Japanese zoysiagrass had less electrolyte leakage, and higher POD activity and shoot density than both kentucky bluegrass and tall fescue. The results suggest that turfgrass tolerance to traffic stress may be related to leaf antioxidant activity. Turfgrass species or cultivars with higher leaf antioxidant activity may be more tolerant to traffic stress than those with lower antioxidant activity.


2019 ◽  
Vol 144 (5) ◽  
pp. 305-313
Author(s):  
Bo Xiao ◽  
David Jespersen

Turfgrasses have varying tolerance to waterlogging conditions. The objective of this study was to identify important root traits and physiological responses to waterlogging stress in seashore paspalum (Paspalum vaginatum) and bermudagrass (Cynodon sp.). After being exposed to waterlogging conditions for 28 days, turf quality, leaf photosynthesis, transpiration rate, stomatal conductance (gS), and root fresh weight were significantly decreased in bermudagrass, and root lipid peroxidation was significantly increased. However, seashore paspalum was found to be more tolerant to waterlogging conditions and changes in turf quality, photosynthesis, or lipid peroxidation were not seen. The waterlogging treatments increased specific root length (SRL), surface area, and volume and decreased root respiration and diameter to a greater extent in seashore paspalum compared with bermudagrass. Under waterlogging conditions, root aerenchyma formation was found in both seashore paspalum and bermudagrass, but to a greater extent in seashore paspalum. Both grasses exhibited significant increases in root water-soluble carbohydrate (WSC) but to a lesser extent in seashore paspalum than in bermudagrass. Shoot WSC remained unchanged in seashore paspalum but was significantly increased in bermudagrass. These results indicate greater root morphological changes such as root volume, SRL, and root porosity, as well as lower root respiration may be important contributors to waterlogging tolerance for seashore paspalum.


1992 ◽  
Vol 6 (4) ◽  
pp. 852-857 ◽  
Author(s):  
J. Christopher Hall ◽  
C. Ken Carey

Effects of linuron on annual bluegrass control and Kentucky bluegrass cultivar tolerance were studied in field and growth chamber experiments. In controlled environment experiments, linuron at 0.06, 0.12, 0.25, 0.50, and 0.75 kg ai ha-1 was applied to pure stands of annual bluegrass and eight Kentucky bluegrass cultivars. Linuron at the two highest rates controlled annual bluegrass, reducing the clipping dry weight by more than 85% 4 wk after treatment, and by 65 to 92% 6 wk after treatment. Growth of Kentucky bluegrass was reduced with the most severe reduction occurring 2 wk after linuron application. All cultivars exhibited normal growth 8 wk after treatment. In field experiments, linuron at rates from 1.5 to 2.0 kg ai ha-1 controlled annual bluegrass in old (> 5 yr) Kentucky bluegrass stands, and in 16 cultivars of 1-yr and 2-yr-old Kentucky bluegrass stands, with little or no damage. At rates of 1.5, 2.0, and 2.5 kg ai ha-1 linuron, damage to newly seeded cultivars was moderate to severe. However, 6 to 7 wk after linuron application to newly seeded cultivars, stand density and turf quality were equivalent to untreated checks.


1994 ◽  
Vol 6 (3) ◽  
pp. 295-305 ◽  
Author(s):  
B. E. Chapman ◽  
D. J. Roser ◽  
R. D. Seppelt

Water soluble compounds were extracted from the dominant cryptogams of the Windmill Islands, Wilkes Land, and compared with standard polyols, sugars and amino acids using 13C nuclear magnetic resonance (NMR) spectroscopy. Previous findings for sugars and polyols from gas liquid chromatorgraphy were validated and extended. Arabitol, ribitol and mannitol were confirmed as the major soluble carbohydrate compounds in all lichen species examined. Sucrose, fructose and glucose, but no polyols were detected in two species of moss. Sorbitol was confirmed as a major component of the algae Prasiola crispa and Schizogonium murale. Mesotaenium bergrenii was confirmed to contain sucrose and glucose. No significant quantities of sugars or polyols or any other compound were found in extracts of the red snow alga Chloromonas sp.1. Amino acids were detected in the majority of cryptogam samples and were particularly abundant in the algae P. crispa and S. murale. In the latter species the total identified acids ranged from 13.5–66mg g-1 dry weight. In addition to the common amino acid components of proteins, betaine and γ-amino-butyric acid were detected, the latter being particularly abundant, being found widely in the moss, lichen and algae. Several unknown carbohydrates were characterized. Usnea sphacelata, U. antarctica and Pseudephebe minuscula contained a deoxy-hexitol, Grimmia antarctici contained resonance peaks consistent with a trisaccharide containing a sucrose moiety and Umbilicaria decussata possibly contained a glucose-arabitol dimer. 13C NMR was confirmed as a powerful tool for the characterization of low molecular weight constituents of Antarctic cryptogams.


2006 ◽  
Vol 33 (9) ◽  
pp. 799 ◽  
Author(s):  
Sari A. Ruuska ◽  
Greg J. Rebetzke ◽  
Anthony F. van Herwaarden ◽  
Richard A. Richards ◽  
Neil A. Fettell ◽  
...  

The water-soluble carbohydrate (WSC) that accumulates in the stems of wheat during growth can be an important contributor to grain filling, particularly under conditions when assimilation is limited, such as during end-of-season drought. WSC concentration was measured at anthesis across a diverse set of wheat genotypes over multiple environments. Environmental differences in WSC concentration were large (means for the set ranging between 108 and 203 mg g–1 dry weight), and there were significant and repeatable differences in WSC accumulation among genotypes (means ranging from 112 to 213 mg g–1 dry weight averaged across environments), associated with large broad-sense heritability (H = 0.90 ± 0.12). These results suggest that breeding for high WSC should be possible in wheat. The composition of the WSC, examined in selected genotypes, indicated that the variation in total WSC was attributed mainly to variation in the fructan component, with the other major soluble carbohydrates, sucrose and hexose, varying less. The degree of polymerisation (DP) of fructo-oligosaccharides was up to ~13 in samples where higher levels of WSC were accumulated, owing either to genotype or environment, but the higher DP components (DP > 6) were decreased in samples of lower total WSC. The results are consistent with fructan biosynthesis occurring via a sequential mechanism that is dependent on the availability of sucrose, and differences in WSC contents of genotypes are unlikely to be due to major mechanistic differences.


2021 ◽  
Vol 12 ◽  
Author(s):  
Khin Lay Kyu ◽  
Al Imran Malik ◽  
Timothy David Colmer ◽  
Kadambot H. M. Siddique ◽  
William Erskine

Mungbean [Vigna radiata (L.) Wilczek] and blackgram [Vigna mungo (L.) Hepper] are important crops for smallholder farmers in tropical and subtropical regions. Production of both crops is affected by unexpected and increasingly frequent extreme precipitation events, which result in transient soil waterlogging. This study aimed to compare the waterlogging tolerance of mungbean and blackgram genotypes under the varying duration of waterlogging stress at germination and seedling stages. We evaluated the responses to different durations of transient waterlogging in a sandy clay loam under temperature-controlled glasshouse conditions. Waterlogging durations were 0, 1, 2, 3, 4, 5, 6, 7, and 8 days during germination and 0, 2, 4, 8, and 16 days during the seedling stage. We used two mungbean genotypes (green testa), Celera II-AU (small-seeded), and Jade-AU (large-seeded), contrasting in seed size and hypocotyl pigmentation, and a blackgram genotype (black testa), Onyx-AU. Waterlogging reduced soil redox potential, delayed or even prevented germination, decreased seedling establishment, and affected shoot and root development. In the seedlings waterlogged (WL) at 15 days after sowing (DAS), adventitious root formation and crown nodulation varied between the genotypes, and 16 days of waterlogging substantially reduced growth but did not result in plant death. Plants in soil with waterlogging for 8–16 days followed by drainage and sampling at 39 DAS had reduced shoot and root dry mass by 60–65% in mungbean and 40% in blackgram compared with continuously drained controls, due at least in part to fewer lateral roots. Soil plant analysis development (SPAD) chlorophyll content was also reduced. Onyx-AU, a blackgram genotype, was more tolerant to transient waterlogging than Jade-AU and Celera II-AU in both growth stages. Of the two mungbean genotypes, Celera II-AU had a greater seedling establishment than Jade-AU post waterlogging imposed at sowing. In contrast, Jade-AU had more plant biomass and greater recovery growth than Celera II-AU after waterlogging and recovery during the seedling stage. Both species were delayed in emergence in response to the shorter periods of transient waterlogging at germination, and with the longer waterlogging germination and emergence failed, whereas at the seedling stage both showed adaptation by the formation of adventitious roots.


Weed Science ◽  
1973 ◽  
Vol 21 (3) ◽  
pp. 212-217 ◽  
Author(s):  
J. W. Shriver ◽  
S. W. Bingham

Bromacil (5-bromo-3-sec-butyl-6-methyluracil) had no effect on germination but reduced growth of emerging shoots of orchardgrass (Dactylis glomerataL. ‘Virginia Common’) more than Kentucky bluegrass (Poa pratenseL. ‘Merion’). Fresh weight gain and transpiration were reduced in orchardgrass seedlings at 0.125 ppmw of bromacil whereas 1.0 ppmw were required for reductions in bluegrass. Photosynthesis was inhibited in both plants; however, bluegrass recovered in 6 days. Water soluble carbohydrate content was greater and was not reduced as much by bromacil in bluegrass compared with orchardgrass. Absorption of 2-14C-bromacil from solution and translocation to shoots was directly related to transpiration rate. Bromacil was translocated acropetally from sheath and foliar treatments. Higher metabolic conversion of 2-14C-bromacil occurred in bluegrass compared to orchardgrass. Metabolites detected in plant extracts were 5-bromo-3-(2-hydroxy-1-methylpropyl)-6-methyluracil and an unknown. Traces of 3-sec-butyl-6-methyluracil and 5-bromo-3-sec-butyl-6-hydroxymethyluracil were also detected. Bluegrass tolerance involved high carbohydrate levels in tissues, hydroxylation of bromacil, and recovery of photosynthesis.


2017 ◽  
Vol 142 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Xiujie Yin ◽  
Chao Zhang ◽  
Xin Song ◽  
Yiwei Jiang

Waterlogging can occur in salt-affected turfgrass sites. The objective of this study was to characterize growth and carbohydrate, lipid peroxidation, and nutrient levels in the leaves and roots of two perennial ryegrass (Lolium perenne) cultivars (Catalina and Inspire) to short-term simultaneous waterlogging and salinity stress. Previous research showed that ‘Catalina’ was relatively more tolerant to salinity but less tolerant to submergence than ‘Inspire’. Both cultivars were subjected to 3 and 7 days of waterlogging (W), salinity [S (300 mm NaCl)], and a combination of the two stresses (WS). Across the two cultivars, W alone had little effect on the plants, while both S and WS alone significantly decreased plant height (HT), leaf fresh weight (LFW), leaf dry weight (LDW), root fresh weight (RFW), root dry weight (RDW), leaf nitrogen (LN) and carbon (LC), and leaf and root K+ (RK+), and increased leaf water-soluble carbohydrate (LWSC) and root water-soluble carbohydrate (RWSC), malondialdehyde (MDA), and Na+ content, compared with the control. A decline in chlorophyll content (Chl) was found only at 7 days of WS. Leaf phosphorus (LP) content either decreased or remained unchanged but root phosphorus content increased under S and WS. Reductions in LFW and LDW were found at 3 days of S and WS, whereas RFW and RDW were unaffected until 7 days of S or WS. Both cultivars responded similarly to W, S, and WS with a few exceptions on RDW, LWSC, leaf MDA (LMDA), and root MDA (RMDA). Although WS caused declines in Chl and resulted in higher leaf Na+ (LNa+) and root Na+ (RNa+) than S at 7 days of treatment, S and WS had similar effects on growth, carbohydrate, MDA, N, C, and phosphorus, and K+ content across the two cultivars. The results suggested that S alone largely accounted for the negative effects of WS on plant growth and physiology including alteration of carbohydrate and nutrient content as well as induction of lipid peroxidation.


2010 ◽  
Vol 20 (4) ◽  
pp. 758-763 ◽  
Author(s):  
Stefano Macolino ◽  
Matteo Serena ◽  
Bernd Leinauer ◽  
Umberto Ziliotto

Warm-season grasses are not widely accepted in Mediterranean countries because they lose color during the winter months. A study was conducted at the University of Padova (Padova, Italy) to determine whether fall and spring water-soluble carbohydrate (WSC) content in stolons of seeded bermudagrass cultivars (Cynodon dactylon) influenced spring green-up in the first year of establishment. Nine bermudagrass cultivars (La Paloma, Mohawk, NuMex Sahara, Princess 77, Riviera, SR 9554, Barbados, Contessa, and Yukon) were seeded in July 2005, and dry weight and WSC content in stolons were measured in Fall 2005 and again in Spring 2006. The percentage of green cover and days needed to achieve 80% green cover (D80) were regressed against November and March values of stolon dry weight and WSC content to determine if they were good predictors of D80. ‘Yukon’ showed earliest spring green-up by end of April, and ‘Princess 77’ and ‘Riviera’ were slowest, needing 43 to 46 days more than ‘Yukon’ to reach D80. There was a significant inverse relationship between November (r2 = 0.57) and March (r2 = 0.77) WSC content in stolons and D80 for all nine bermudagrass cultivars. These results suggest that bermudagrass cultivars with high WSC in stolons recover more rapidly from dormancy during establishment than those with low WSC content.


1982 ◽  
Vol 60 (3) ◽  
pp. 195-200 ◽  
Author(s):  
James A. Bunce

Net photosynthetic rates, stomatal and mesophyll conductances to CO2 uptake, water soluble and total nonstructural carbohydrates contents, specific leaf weights of fully expanded source leaves, and elongation rates of rapidly expanding leaves were measured on 2 days during a period of water stress in soybean and sunflower plants in a controlled environment. Compared with control plants, elongation rates of expanding leaves and translocation rates of dry weight from source leaves in the light were more reduced by stress than were net photosynthetic rates of source leaves. Over the 8-h light period, the dry weight increase of source leaves was up to 23 mg dm−2 (1.5 × control) higher in stressed plants, but was not in all cases higher in stressed than control plants. In stressed plants a smaller fraction of the increase in dry weight in source leaves in the light was in nonstructural carbohydrates. At the end of the light period, water soluble and total nonstructural carbohydrates were up to 9 mg dm−2 higher in stressed than control leaves in sunflower, but were not higher in soybean. No differences in carbohydrate contents at the end of the light period were found in sunflower between the 2 days of stress, although stress became more severe in terms of lower rates of photosynthesis, translocation, and leaf elongation. The approximately threefold reductions in net photosynthetic rates in stressed leaves were related to both lower stomatal and lower mesophyll conductances. Mesophyll conductances of stressed leaves were not significantly correlated with water soluble carbohydrate content, total nonstructural carbohydrate content, or specific leaf weight in either species.


Sign in / Sign up

Export Citation Format

Share Document