scholarly journals Comparing Spray Gun and Spray Boom Applications in Two Ivy Crops with Different Crop Densities

HortScience ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Dieter Foqué ◽  
Jan G. Pieters ◽  
David Nuyttens

Flemish greenhouse growers predominantly use handheld spray guns and lances for their crop protection purposes despite the heavy workload and high risk for operator exposure associated with these techniques. These spray application techniques have also shown to be less effective than spray boom equipment under many conditions. Handheld spraying techniques are less expensive, however, and they are more flexible in practical use. Many growers also erroneously believe that high spray volumes and pressures are needed to assure good plant protection. The aim of this work was to evaluate the spray deposition, penetration, and uniformity between a manually pulled horizontal spray boom as compared with a spray gun under controlled laboratory conditions. In this study, we evaluated six spray application techniques, i.e., three spray boom and three spray gun techniques. In general, the deposition results were comparable between the spray boom and the spray gun applications. The spray boom applications, however, resulted in a more uniform spray distribution. At the plant level, the spray distribution was not uniform for any of the techniques used; the highest deposits were observed on the upper (or adaxial) side of the top leaves. Using spray guns at a higher spray pressure did not improve spray penetration in the canopy or deposition on the bottom (or abaxial) side of the leaves. Of the different nozzle types tested on the spray boom, the extended range flat fan XR 8003 gave the best results. Crop density clearly affected crop penetration and deposition on the bottom side of the leaves.

2017 ◽  
Vol 60 (3) ◽  
pp. 647-656 ◽  
Author(s):  
Ingrid Zwertvaegher ◽  
Dieter Foqué ◽  
Donald Dekeyser ◽  
Stephanie Van Weyenberg ◽  
David Nuyttens

Abstract. With the implementation of integrated pest management in the European Union, growers are obliged to manage pests in a manner that minimizes health and environmental risks due to the use of plant protection products. Among other approaches, this goal can be achieved by optimizing spray application techniques. As an alternative to the predominantly used handheld equipment, such as spray guns, spray boom systems might substantially improve spray application, and thus crop protection management, in greenhouses. The aim of this proof-of-concept study was to compare different spray configurations in a spray cabin designed to spray ornamental potted plants that are moving on a conveyor belt. Seven different spray configurations were examined for optimal spray deposition in two crops (azalea and ivy) using mineral chelate tracers. The deposition tests showed that the presented prototype can satisfactorily spray potted plants up to a height of 25 cm including the pot height. The best spray deposition was found with two flat-fan nozzles oriented 35° upward, spraying at 1.0 bar and an application rate of 1047 L ha-1. This configuration increased deposition on the underside of the leaves and at the middle foliage layer compared to the other configurations that were evaluated. The spray cabin with a band spray setting has potential to mitigate the use of plant protection products and achieve a more efficient spray application compared to traditional handheld techniques and broadcast spray boom techniques. Keywords: Crop protection, Integrated pest management, Nozzle type, Spray deposition.


HortScience ◽  
2010 ◽  
Vol 45 (9) ◽  
pp. 1349-1356 ◽  
Author(s):  
Tanja Mucha-Pelzer ◽  
Reinhard Bauer ◽  
Ekkehard Scobel ◽  
Christian Ulrichs

Since the 1900s, diatomaceous earth (DE) has been used as an alternative to chemical insecticides in stored product protection. New silica and DE formulations offer expanded possibilities for use in horticultural crops. However, many crop pests are found on the leaf underside and this is especially challenging when using silica because the substance must have direct contact with the insect to be effective. We tested three application techniques with three formulations of silica to evaluate their efficacy against different developmental stages of mustard leaf beetle (Phaedon cochleariae Fab.) and the cabbage worm of the large white butterfly (Pieris brassicae L.) on the host plant species pak choi (Brassica rapa ssp. chinensis L.). Formulations were applied manually with a powder blower, with an electrostatic spray gun, and in a closed chamber also working with electrostatic forces. The silica formulations used in the biotests were Fossil Shield 90.0s®, AE R974®, and a formulation developed at Humboldt University Berlin called AL-06-109. All formulations contained at least 60% silicon dioxide. Significant differences in efficacy were detected with different application methods and/or silica formulations. AL-06-109 electrostatic cabin-applied was the most effective combination. All formulations, if applied electrostatically, resulted in good coverage and in high plant protection against insect pests. Dusts applied manually were unevenly distributed and easily removed by wind from leaf surfaces. Electrostatic application with a spray gun resulted in even particle distribution on plants, but overspray was high. To accomplish even coverage without wasting so much active material, an enclosed mobile chamber with an electrostatic spray system and an attached exhaust system was developed.


HortScience ◽  
2009 ◽  
Vol 44 (7) ◽  
pp. 1921-1927 ◽  
Author(s):  
Pascal Braekman ◽  
Dieter Foqué ◽  
Marie-Christine Van Labeke ◽  
Jan G. Pieters ◽  
David Nuyttens

As a result of the decreasing availability of authorized plant protection products, adequate pest control becomes more difficult in many ornamental crops and almost no information is available about the optimization of spray application techniques in ornamental crops. Yet, spray boom systems—instead of the still predominantly used spray guns—might improve crop protection management in greenhouses considerably. Application rate, nozzle type, and configuration will influence the spray deposition and, as such, its efficiency. In this study, spray deposition in ivy pot plants [Hedera algeriensis cv. Montgomery, Hibb.], grown on hanging shelves in greenhouses, was compared with a traditional spray gun with a disc-core nozzle and a manually pulled trolley equipped with two vertical spray booms. The sprayings with the spray gun were performed at an application rate of 8500 L·ha−1. For the vertical spray boom system, two different reduced application rates (2500 and 5000 L·ha−1) with five different combinations of nozzle type, size, and pressure for each application rate were investigated. This research underlined that, besides the application rate, also the spray application equipment used has an important effect on the spray depositions. Nozzle type, size, and pressure on the vertical spray boom system only had a minor effect on the spray deposition. Although the spray gun performed well on the easily accessible crop zone with the runners, its performance in the more dense main crop zone was inferior. With 240% more sprayed liquid (8500 L·ha−1) and chemicals, the realized depositions in this crop zone were not significantly different from the ones obtained with the vertical spray boom system applying only 2500 L·ha−1. Spraying at 5000 L·ha−1, the vertical spray boom system achieved a 82.9% higher overall spray deposition in the main crop canopy zone compared with the spray gun at an application rate of 8500 L·ha−1. For the sprays applied with the vertical spray boom system, doubling the application rate resulted in equally higher spray depositions, except for the inner canopy deposition for which higher application rates were more effective.


2020 ◽  
Vol 12 (17) ◽  
pp. 7052
Author(s):  
Sabina Failla ◽  
Elio Romano

The cultivation of vegetables in greenhouses requires seedlings produced in nurseries with high levels of practice specialisation. The nurseries are dedicated to the early stages of growth, from sowing to the first leaves. There, the seeding density and the hydro-climatic conditions favour diseases. Plant protection treatments are carried out with the use of low-cost machines, whose efficiencies and safety conditions depend on the workers’ ability. The irrigation system with a mechanised horizontal spray boom could be an alternative solution to the hand-held spray gun. This research aimed to investigate the use of a horizontal boom sprayer for the distribution of pesticides in different pressure conditions and forward speeds compared with a spray gun, in relation to tomato growth stages. The tests were carried out on tomato seedlings grown in polystyrene seeding boxes and arranged on hanging benches. Deposits on the seedlings (µL cm−2) and losses in the soil (µL cm−2) were assessed by means of standard colorimetric analysis. In order to reduce the environmental pollution and increase the sustainability of the treatments, the pressure at the horizontal spray boom should be reduced and the arrangement of the outermost nozzles may also be better set on the boom.


The application of preparations of biological origin in the protection system of soybean grown under conditions of intensive irrigated crop rotations conforms to the modern tendencies of science and production development. The use of them contributes to solving ecological, production and social-economic problems. The study presents the three-year research on the efficiency of systems protecting soybean from pests and diseases based on biological and chemical preparations. The research was conducted in typical soil and climate conditions of the South of Ukraine. Zonal agricultural methods and generally accepted research methodology were used. The purpose of the research was to create a soybean protection system based on preparations of biological origin, ensuring high productivity of high-quality products reducing a negative impact of the crop production on the environment. The study emphasizes that, under irrigated conditions of the South of Ukraine, the application of biological preparations has a positive impact on the indexes of growth, development and formation of the elements of soybean yield structure. There was an increase in the crop biological weight by 13.8 % and 22.1 % and the number of seeds per plant rose by 11.6 and 14.6 % as a consequence of eliminating harmful organisms with the plant protection systems. The larger ground mass was formed by medium-ripe varieties Danai and Svyatogor, on which the increase from protection measures was higher. Weight 1000 pcs. the seeds did not undergo significant changes. It is established that the larger seeds were formed by Danaya and Svyatogor varieties, in which the average weight is 1000 pcs. seeds were 142 and 136 g, respectively, while in the variety Diona this figure was 133 g. There was an increase in the height of the lowest pod when the total plant height rose. For medium-ripe varieties was characterized by a higher attachment of beans, where the highest values of this indicator acquired in the variety Svyatogor. The medium maturing soybean variety Danaia formed the maximum yield of 3.23 and 3.35 t/ha respectively, when biological and chemical protection systems were applied. The research establishes that the application of the bio-fungicide Psevdobakterin 2 (2.0 l/ha) in the crop protection system at the beginning of soybean flowering and the bio-fungicide Baktofit (2.5 l/ha) with the bio-insecticide Lepidotsid-BTU (10.0 l/ha) at the beginning of pod formation does not reduce the productivity of the soybean varieties under study considerably, when compared to the application of chemical preparations. The research determines that the soybean protection system under study ensures a decrease in the coefficient of soybean water uptake by 7.2-13.0 %, increasing the total water intake to an inconsiderable degree. Biologization of the soybean crop protection system leads to a reduction in production costs compared to the chemical protection system. Taking into account the needs for the collection of additional products, costs increase by an average of 1 thousand UAH/ha, while for chemical protection systems by 1.8 thousand UAH/ha. At the same time, the cost is reduced by 220-360 UAH/t and the profitability of growing crops is increased by 3.8-7.8 %. There has been a reduction in the burden of pesticides on the environment and the production of cleaner products. This indicates the prospect of using the biofungicides Pseudobacterin 2 and Bactophyte and the bioinsecticide Lepidocid-BTU on soybeans to protect plants from pests.


Author(s):  
Marco Grella ◽  
Fabrizio Gioelli ◽  
Paolo Marucco ◽  
Ingrid Zwertvaegher ◽  
Eric Mozzanini ◽  
...  

AbstractThe pulse width modulation (PWM) spray system is the most advanced technology to obtain variable rate spray application without varying the operative sprayer parameters (e.g. spray pressure, nozzle size). According to the precision agriculture principles, PWM is the prime technology that allows to spray the required amount where needed without varying the droplet size spectra which benefits both the uniformity of spray quality and the spray drift reduction. However, some concerns related to the effect of on–off solenoid valves and the alternating on/off action of adjacent nozzles on final uneven spray coverage (SC) have arisen. Further evaluations of PWM systems used for spraying 3D crops under field conditions are welcomed. A tower-shaped airblast sprayer equipped with a PWM was tested in a vineyard. Twelve configurations, combining duty cycles (DC: 30, 50, 70, 100%) and forward speeds (FS: 4, 6, 8 km h−1), were tested. Two methodologies, namely field-standardized and real field conditions, were adopted to evaluate the effect of DC and FS on (1) SC variability (CV%) along both the sprayer travel direction and the vertical spray profile using long water sensitive papers (WSP), and (2) SC uniformity (IU, index value) within the canopy at different depths and heights, respectively. Furthermore, the SC (%) and deposit density (Nst, no stains cm−2), determined using short WSP, were used to evaluate the spray application performances taking into account the spray volumes applied. Under field-controlled conditions, the pulsing of the PWM system affects both the SC variability measured along the sprayer travel direction and along the vertical spray profile. In contrast, under real field conditions, the PWM system does not affect the uniformity of SC measured within the canopy. The relationship between SC and Nst allowed identification of the ranges of 200–250 and 300–370 l ha−1 as the most suitable spray volumes to be applied for insecticide and fungicide plant protection products, respectively.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 34-47
Author(s):  
Borja Espejo-Garcia ◽  
Ioannis Malounas ◽  
Eleanna Vali ◽  
Spyros Fountas

In the past years, several machine-learning-based techniques have arisen for providing effective crop protection. For instance, deep neural networks have been used to identify different types of weeds under different real-world conditions. However, these techniques usually require extensive involvement of experts working iteratively in the development of the most suitable machine learning system. To support this task and save resources, a new technique called Automated Machine Learning has started being studied. In this work, a complete open-source Automated Machine Learning system was evaluated with two different datasets, (i) The Early Crop Weeds dataset and (ii) the Plant Seedlings dataset, covering the weeds identification problem. Different configurations, such as the use of plant segmentation, the use of classifier ensembles instead of Softmax and training with noisy data, have been compared. The results showed promising performances of 93.8% and 90.74% F1 score depending on the dataset used. These performances were aligned with other related works in AutoML, but they are far from machine-learning-based systems manually fine-tuned by human experts. From these results, it can be concluded that finding a balance between manual expert work and Automated Machine Learning will be an interesting path to work in order to increase the efficiency in plant protection.


2020 ◽  
Vol 10 (4) ◽  
pp. 580-593
Author(s):  
M A. Bryzgalina ◽  

The demand for organic food is a prerequisite for the formation and development of organic agriculture, and the task of promoting it on domestic and foreign markets is among the priority ones. A serious problem in the sale of this category of goods to the domestic food markets of the country is the distrust of potential consumers. It is possible to solve this problem through certification and the use of a well-known brand. Certification of manufacturers of environmentally friendly products is a rather complicated and expensive procedure, therefore it is not available for most agricultural producers in the Saratov region. However, basing on the fact that today the task of developing the organic agriculture industry is set at the level of the government of the country, it is possible to solve this problem with the support of the state. The article examines the enterprises of the Saratov region of various legal forms, which do not use fertilizers and chemical means of crop protection in the production of crop production. Using the example of agricultural organizations and farms in the region, a mechanism for subsidizing certification of the most promising producers of organic wheat (winter and spring) is proposed, which includes the allocation of targeted subsidies for its implementation. As a criterion for the selection of applicants for this type of state support, as well as the distribution of budgetary resources between them, it is proposed to use the average indicator (potential) of the annual volume of organic production in the work. As a result, direct participants in certification subsidies were selected from the compiled sample of the studied enterprises that do not use chemical plant protection products and mineral fertilizers and the total annual volume of their marketable wheat was determined. The author determined the maximum cost of quality confirmation procedures for one enterprise, taking into account the increasing coefficients per one day of inspection, and also established the largest amount of budgetary resources that may be spent on the implementation of the proposed measure. In order to evaluate the effectiveness of the proposed certification subsidy mechanism, the author developed formulas for determining the selling price of products in the promising organic segment, taking into account its increase by the level of premium premiums.


Sensors ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 691-708 ◽  
Author(s):  
Emilio Gil ◽  
Jaume Arnó ◽  
Jordi Llorens ◽  
Ricardo Sanz ◽  
Jordi Llop ◽  
...  

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Patrice A. Marchand

Abstract Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 established a framework for Community action to bring about the sustainable use of pesticides and encourage low concern biorationals. Basic substances described in article 23 of EC phytopharmaceutical Regulation No 1107/2009 consist of a new operative category for crop protection products with 16 substances approved so far. Another status, ruled by article 22 is also operative with 11 approved low-risk substances (see EU pesticide database). Now small and medium-sized enterprises (SMEs) have the opportunity to register biorationals at the EU level in one of the two categories. Our institute previously provided technical expertise on how to complete the Basic Substance Application (BSA), together with a description of first results. However it is clear that there is a need for a shorter survey of the two parallel procedures for SMEs. Here we provide a concise sequence of the necessary steps for SMEs, including strategic approach, a rapid steps description, a timeframe for the global pathway, up to the final step, after approval by the Plants, Animals, Food and Feed Standing Committee (PAFF). We present in detail the advantages and limitations of the two statutes. The introduction of approved substances into organic farming is also discussed. Currently basic and low-risk substance pathways are now accessible for biorationals handled by SMEs. Therefore, the option is open for SMEs to seek a possibly low-risk active substances endorsement with market authorizations or a basic substance approval with no plant protection product claims depending on the selected strategy.


Sign in / Sign up

Export Citation Format

Share Document