scholarly journals Costs of Establishing Organic Northern Highbush Blueberry: Impacts of Planting Method, Fertilization, and Mulch Type

HortScience ◽  
2012 ◽  
Vol 47 (7) ◽  
pp. 866-873 ◽  
Author(s):  
James W. Julian ◽  
Bernadine C. Strik ◽  
Handell O. Larco ◽  
David R. Bryla ◽  
Dan M. Sullivan

A systems trial was established to evaluate factorial management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The practices included: flat and raised planting beds; feather meal and fish emulsion fertilizer applied at 29 and 57 kg·ha−1 of nitrogen (N); sawdust mulch, compost topped with sawdust mulch (compost + sawdust), or weed mat; and two cultivars, Duke and Liberty. The planting was established in Oct. 2006 and was certified organic in 2008. Weeds were managed by hand-hoeing or pulling in sawdust and weed mat-mulched plots and a combination of hand-pulling, propane-flaming, and post-emergent, targeted applications of acetic acid or lemon grass oil to any weeds present in the compost + sawdust plots depending on year. Data were recorded on input costs and returns in Year 0 (establishment year) through Year 3. Plants were harvested beginning the second year after planting. Planting costs were $741/ha higher on raised beds than on the flat, but the higher costs were more than offset by an average of 63% greater yields that improved net returns by as much as $2861/ha. Cumulative net returns after 3 years were negative and ranged from –$32,967 to –$50,352/ha when grown on raised beds and from –$34,320 to –$52,848/ha when grown on flat beds, depending on cultivar, mulch, and fertilizer rate and source. The greatest yields were obtained in plants fertilized with the low rate of fish emulsion or the high rate of feather meal, but fertilizing with fish emulsion by hand cost (materials and labor) as much as $5066/ha more than feather meal. Higher costs of establishment and pruning for ‘Liberty’ compared with ‘Duke’ were offset by higher net returns in all treatment combinations, except feather meal fertilizer with either weed mat or compost + sawdust mulch. Mulch type affected establishment costs, weed presence, and weed management costs, which included product and labor costs for application of herbicides (acetic acid and lemon grass oil) as well as labor for hand-weeding as needed, depending on the treatment. The highest yielding treatment combinations (growing on raised beds mulched with compost + sawdust and fertilized with fish emulsion) improved cumulative net returns as much as $19,333/ha over 3 years.

HortScience ◽  
2013 ◽  
Vol 48 (10) ◽  
pp. 1250-1261 ◽  
Author(s):  
Handell Larco ◽  
Bernadine C. Strik ◽  
David R. Bryla ◽  
Dan M. Sullivan

A systems trial was established in Oct. 2006 to evaluate management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The practices included: flat and raised planting beds; feather meal and fish emulsion fertilizer each applied at rates of 29 and 57 kg·ha−1 nitrogen (N); sawdust mulch, compost topped with sawdust mulch (compost + sawdust), or weed mat; and two cultivars, Duke and Liberty. Each treatment was irrigated by drip and weeds were controlled as needed. The planting was certified organic in 2008. After one growing season, allocation of biomass to the roots was greater when plants were grown on raised beds than on flat beds, mulched with organic mulch rather than a weed mat, and fertilized with the lower rate of N. Plants also allocated more biomass belowground when fertilized with feather meal than with fish emulsion. Although fish emulsion improved growth relative to feather meal in the establishment year, this was not the case the next year when feather meal was applied earlier. After two seasons, total plant dry weight (DW) was generally greater on raised beds than on flat beds, but the difference varied depending on fertilizer and the type of mulch used. Shoots and leaves accounted for 60% to 77% of total plant biomass, whereas roots accounted for 7% to 19% and fruit accounted for 4% to 18%. Plants produced 33% higher yield when grown on raised beds than on flat beds and had 36% higher yield with weed mat than with sawdust mulch. Yield was also higher when plants were fertilized with the low rate of fish emulsion than with any other fertilizer treatment in ‘Duke’ but was unaffected by fertilizer source or rate in ‘Liberty’. Although raised beds and sawdust or sawdust + compost produced the largest total plant DW, the greatest shoot growth and yield occurred when plants were mulched with weed mat or compost + sawdust on raised beds in both cultivars. The impact of these organic production practices on root development may affect the sustainability of these production systems over time, however, because plants with lower root-to-shoot ratios may be more sensitive to cultural or environmental stresses.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 245
Author(s):  
Yixin Cai ◽  
Fumiomi Takeda ◽  
Brian Foote ◽  
Lisa Wasko DeVetter

Machine harvesting blueberry (Vaccinium sp.) alleviates labor costs and shortages but can reduce fruit quality. Installation of softer catching surfaces inside modified over-the-row harvesters (modified OTR) and adjusting harvest intervals may improve fruit quality and packout. The objective of this study was to determine the effect of harvest interval on fruit quality of fresh market northern highbush blueberry (Vaccinium corymbosum L.) harvested using a modified OTR. ‘Liberty’ blueberry bushes were harvested by hand or using a modified OTR at 3-, 10-, and 14-day intervals in 2019 and at 7-, 11-, and 14-day intervals in 2020. Hand-harvested ‘Liberty’ had greater packout and firmness than machine-harvested fruit. Machine harvesting at the 3-day interval in 2019, and the 14-day interval in 2020 reduced packout from 70–80% to 60% and 54%, respectively. In 2019, machine harvesting at a 3-day interval overall resulted in fruit with greater firmness, higher titratable acidity (TA), and lower total soluble solids (TSS) and SS/TA, compared to other harvest intervals. In 2020, the 7-day machine-harvest interval had a greater TA and lower TSS/TA, compared to the 11- and 14-day intervals. Overall, modified OTR machine-harvest intervals can be extended to 10–11 days for fresh market northern highbush cultivars such as ‘Liberty’ grown in northwest Washington.


HortScience ◽  
2017 ◽  
Vol 52 (6) ◽  
pp. 844-851 ◽  
Author(s):  
Bernadine C. Strik ◽  
Amanda J. Vance ◽  
Chad E. Finn

Northern highbush blueberry (Vaccinium corymbosum L.) cultivars were evaluated from planting (Oct. 2006) through 2014 in a certified organic research site in Aurora, OR. The treatments included cultivar (Duke, Bluecrop, Reka, Bluejay, Bluegold, Draper, Legacy, Liberty, Ozarkblue, and Aurora), amendment-mulch [“compost + sawdust” (included preplant amendment and a surface mulch of either an agricultural on-farm crop waste compost or yard-debris compost and sawdust), and “weed mat” (no preplant amendments but with a sawdust mulch topped with weed mat)]. Adding on-farm compost as a preplant amendment and as part of the mulching program increased soil pH from 4.9 to 6.9, organic matter content (OM), and calcium (Ca), magnesium (Mg), and potassium (K) levels compared with the weed mat treatment. The reduced plant growth and yield in some cultivars grown in the compost + sawdust treatment was likely due to the higher soil pH. ‘Bluegold’ and ‘Draper’ were among the cultivars with consistently high flower bud set (40% to 57%), whereas others had consistently low values (e.g., 22% to 45% in ‘Bluecrop’). The number of flowers per bud was affected only by cultivar. There was no effect of year or amendment-mulch treatment on percent fruit set which averaged 93% during the study; however, ‘Ozarkblue’ had a significantly lower fruit set (88%) than only ‘Aurora’ (96%). Berry weight was affected by year (plant age), cultivar, and amendment-mulch treatment. ‘Ozarkblue’ produced the largest berries. Type of amendment-mulch had little effect on berry weight, except in ‘Ozarkblue’, ‘Aurora’, and ‘Reka’ where plants grown with weed mat produced larger fruit than those grown with compost + sawdust. On average, ‘Bluejay’, ‘Draper’, and ‘Liberty’ fruit had the highest percent soluble solids (TSS) and ‘Ozarkblue’ the lowest. Fruit harvested from plants grown with weed mat were firmer than when compost + sawdust was used. ‘Draper’ fruit were much firmer than those of the other cultivars in all years of the study. The number of flower buds per plant multiplied by the number of flowers/bud and berry weight (cultivar specific) and average fruit set was a good predictor of yield in young plants. Yield per plant increased from the second through seventh growing seasons as plants matured in all cultivars except for ‘Duke’ which had the greatest yield in 2014. Cumulative yield was highest in ‘Legacy’ and lowest in ‘Bluejay’ and in ‘Draper’, which had relatively low yield when plants were young. Most cultivars had greater yield when grown with weed mat, whereas ‘Bluegold’ and ‘Liberty’ were unaffected by amendment-mulch treatment. Because weeds were managed in all plots, the cultivar response to amendment-mulch was likely a reflection of sensitivity to preplant amendment with on-farm compost and the resulting higher soil pH. It is possible that the cultivars differed in their adaptability to the various fertility regimes caused by the amendment-mulch treatments and fertilizers used in our study.


HortScience ◽  
2008 ◽  
Vol 43 (1) ◽  
pp. 51-57 ◽  
Author(s):  
William Sciarappa ◽  
Sridhar Polavarapu ◽  
James Barry ◽  
Peter Oudemans ◽  
Mark Ehlenfeldt ◽  
...  

Four significant developments have occurred that amplify opportunity for certified organic growers to grow highbush blueberry (Vaccinium corymbosum) successfully. First, there is the 2002 U.S. Department of Agriculture national organic standard that defines organic production practices and crop labels that creates clarity and evens competition. Second, we have the continued increase of smallfruit and vegetable sales related to nutritional and human health reasons and the related market perception valuing organic produce more highly. Third, new tools are becoming available to organic growers that reduce the risk from pest problems such as the recent Organic Materials Review Institute listing of spinosad registered as a wettable powder (Entrust) and a fruit fly bait (GF-120 NF Naturalyte). Finally, the Rutgers Blueberry Working group has made considerable progress in refining integrated pest management practices and in developing new tools for organic production systems. This “work-in-progress” is investigating alternative approaches to some current agricultural practices in soil building, fertility, cultural approaches, and pest management. The authors' 7-year program has demonstrated organic methods in managing new sources of mulch, two key insect pests, two common diseases, and several weed species in establishing a commercial organic production system for highbush blueberries. As a programmatic result, organic acreage in New Jersey has increased from 0 to more than 150 acres, and more than 40 organic growers have adopted parts of this holistic production system in North America.


HortScience ◽  
2013 ◽  
Vol 48 (12) ◽  
pp. 1484-1495 ◽  
Author(s):  
Handell Larco ◽  
Bernadine C. Strik ◽  
David R. Bryla ◽  
Dan M. Sullivan

A systems trial was established in Oct. 2006 to evaluate management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The practices included: flat and raised planting beds; feather meal and fish emulsion fertilizer each applied at rates of 29 and 57 kg·ha−1 nitrogen (N); sawdust mulch, compost topped with sawdust mulch (compost + sawdust), or weed mat; and two cultivars, Duke and Liberty. Each treatment was irrigated by drip and weeds were controlled as needed. The planting was certified organic in 2008. Bed type affected most leaf nutrients measured in one or both cultivars during the first year after planting, including N, phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), boron (B), manganese (Mn), and zinc (Zn), but had less of an effect on leaf nutrients and no effect on soil pH, organic matter, or soil nutrients measured the next year. Feather meal contained 12 times more Ca and seven times more B than fish emulsion and resulted in higher levels of soil Ca and soil and leaf B in both cultivars, whereas fish emulsion contained three times more P, 100 times more K, and 60 times more copper (Cu) and resulted in higher levels of soil P, K, and Cu as well as a higher level of leaf P and K. Fish emulsion also reduced soil pH. Compost + sawdust mulch increased soil pH and organic matter and resulted in higher levels of soil nitrate-N (NO3-N), P, K, Ca, B, Cu, and Zn than sawdust alone and increased leaf K and B. Weed mat, in contrast, resulted in the lowest soil pH and increased soil ammonium-N (NH4-N). Weed mat also reduced soil Ca and Mg, but its effects on leaf nutrients were variable. Leaf Ca, Mg, and B were below levels recommended for blueberry the first year after planting when plants were fertilized with fish emulsion, whereas leaf N was low or deficient on average in the second year when plants were fertilized with feather meal. Leaf B was also low the second year in all treatments, and leaf Cu was marginally low. Leaf K, conversely, increased from the previous year and was becoming marginally high with fish emulsion. Fish emulsion, weed mat, and compost were generally the most favorable practices in terms of plant and soil nutrition. However, given the impact of each on soil pH and/or plant and soil K, further investigation is needed to determine whether these practices are sustainable over the long term for both conventional and organic production of highbush blueberry.


2019 ◽  
Vol 13 (4) ◽  
pp. 2521-2528
Author(s):  
Rafał Nadulski ◽  
Andrzej Masłowski ◽  
Artur Mazurek ◽  
Paweł Sobczak ◽  
Marek Szmigielski ◽  
...  

HortScience ◽  
2017 ◽  
Vol 52 (9) ◽  
pp. 1201-1213 ◽  
Author(s):  
Bernadine C. Strik ◽  
Amanda Vance ◽  
David R. Bryla ◽  
Dan M. Sullivan

A long-term trial was established in Oct. 2006 in western Oregon to identify organic production systems for maximum yield and quality in highbush blueberry (Vaccinium corymbosum L.). The planting was transitional during the first year after planting and was certified organic during fruit production (2008–16). Treatments included planting method (on raised beds or flat ground), fertilizer source (granular feather meal or fish solubles), and rate (“low” and “high” rates of 29 and 57 kg·ha−1 N during establishment, increased incrementally as the planting matured to 73 and 140 kg·ha−1 N, respectively), mulch [sawdust, yard debris compost topped with sawdust (compost + sawdust), or black, woven polyethylene groundcover (weed mat)], and cultivar (‘Duke’ and ‘Liberty’). Mulches were replenished, as needed, and weeds were controlled throughout the study. Raised beds resulted in greater yield than flat ground during the establishment years but had less effect on yield once the plants were mature. After 9 years, cumulative yield was 22% greater on raised beds than on flat ground in ‘Liberty’ but was unaffected by planting method in ‘Duke’. Cumulative yield was also 10% greater with feather meal than with fish solubles, on average, and 4% greater with the low rate than with the high rate of fertilizer. ‘Duke’ was particularly sensitive to fertilizer source and produced 35% less yield overall with fish solubles than with feather meal. By contrast, there was relatively little effect of fertilizer source or rate on yield in ‘Liberty’. In five of 9 years, yield was 8% to 20% greater with weed mat than with sawdust or compost + sawdust. Mulch type had no effect on cumulative yield of ‘Duke’, but cumulative yield of ‘Liberty’ was 11% greater with weed mat than with sawdust or compost + sawdust. Soil temperature was warmer under weed mat than under sawdust, and plants on raised beds covered with weed mat required more irrigation than those grown on flat ground mulched with sawdust. ‘Duke’ produced heavier, larger, and firmer berries with lower total soluble solids (TSS) than ‘Liberty’. However, other treatment effects on berry quality were relatively small and inconsistent. For example, berry weight was greater on raised beds than on flat ground, on average, but only by 3% (0.06 g/berry). Plants on raised beds also produced berries with slightly lower TSS than those on flat ground (15.2% and 15.7%, respectively, in ‘Liberty’, and 13.1% and 13.3%, respectively in ‘Duke’). There was no effect of fertilizer source or rate on TSS in ‘Liberty’ (15.5% on average), whereas in ‘Duke’, TSS was highest when fertilized at the high (13.7%) or low (13.4%) rate of fish, and was lower when using feather meal (12.9% and 13.1% for low and high rate, respectively). Plants fertilized with fish produced firmer fruit than with feather meal in five of the 7 years in which the measurements were taken. Also, fertilization with the higher rate of either product increased berry firmness compared with the low rate in six of the 7 years. The impact of mulch was inconsistent through the study period. On average, ‘Duke’ berries were softest when fertilized with the low (173 g·mm−1 deflection) and high (176 g·mm−1) rates of feather meal and were the firmest with the high rate of fish (182 g·mm−1). In ‘Liberty’, the low rate of feather meal produced softer fruit (157 g·mm−1) than the other fertilizer treatments (162 g·mm−1 on average). When this study was initiated in 2006, the most common organic production system in this region was raised beds with sawdust mulch and fertilizing with a high rate of fish solubles. For this production system, yield for mature plants in our study (2014−16) was the equivalent of 8.9−12.3 t·ha−1 in ‘Duke’ and 11.8−23.7 t·ha−1 in ‘Liberty’. However, when plants were grown on raised beds with weed mat and fertilized with the high rate of feather meal, yield increased to 10.2−19.3 t·ha−1, depending on year, in ‘Duke’. By contrast, there was little effect of production system on yield of mature ‘Liberty’ plants. These yields, particularly for the best-performing treatment combination in ‘Duke’, are similar to what are observed in commercial conventional fields or organic farms using similar management practices. Our results showed that choice of organic production system can have significant impact on yield and economic costs and returns.


HortScience ◽  
2019 ◽  
Vol 54 (6) ◽  
pp. 1067-1076 ◽  
Author(s):  
Ryan C. Costello ◽  
Dan M. Sullivan ◽  
David R. Bryla ◽  
Bernadine C. Strik ◽  
James S. Owen

New markets for organic northern highbush blueberry (Vaccinium corymbosum L.) have stimulated interest in using composts specifically tailored to the plant’s edaphic requirements. Because composts are typically neutral to alkaline in pH (pH 7 to 8), and blueberry requires acidic soil (pH 4.2 to 5.5), we investigated elemental sulfur (S0) addition as a methodology for reducing compost pH. The objectives were to 1) characterize initial compost chemistry, including the pH buffering capacity of compost (acidity required to reduce pH to 5.0), 2) measure changes in compost chemistry accompanying acidification, and 3) evaluate plant growth and mineral nutrition of blueberry in soil amended with an untreated or acidified compost. Ten composts prepared from diverse feedstocks were obtained from municipalities and farms. Addition of finely ground S0 reduced compost pH from 7.2 to 5.3, on average, after 70 d at 22 °C, and increased the solubility of nutrients, including K (from 22 to 36 mmol(+)/L), Ca (from 5 to 19 mmol(+)/L), Mg (from 5 to 20 mmol(+)/L), and Na (from 6 to 9 mmol(+)/L). Sulfate-S, a product of S0 oxidation, also increased from 5 to 45 mmol(−)/L. The composts were incorporated into soil at a high rate (30% v/v) in a greenhouse trial to evaluate their suitability for use in blueberry production. Shoot and root growth were strongly affected by compost chemical characteristics, including pH and electrical conductivity (EC). Potassium in compost was highly variable (2–32 g·kg−1). Concentration of K in the leaves increased positively in response to compost K, whereas shoot dry weight and root growth declined. Leaf Mg also declined in response to compost K, suggesting that elevated K concentrations in compost may cause Mg deficiency. Composts with the highest K were also high in total N, pH, and EC. Compost acidification to pH ≤ 6 improved growth and increased leaf Mg concentration. On the basis of these results, composts derived from animal manures or young plant tissues (e.g., green leaves) appear to be unsuitable for high-rate applications to blueberry because they usually require high amounts of S0 for acidification and are often high in EC and K, whereas those derived from woody materials, such as local yard debris, appear promising based on their C:N ratio, compost acidification requirement, and EC.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Fan-Hsuan Yang ◽  
David R. Bryla ◽  
R. Troy Peters

Heat-related fruit damage is a prevalent issue in northern highbush blueberry (Vaccinium corymbosum L.) in various growing regions, including the northwestern United States. To help address the issue, we developed a simple climatological model to predict blueberry fruit temperatures based on local weather data and to simulate the effects of using over-canopy sprinklers for cooling the fruit. Predictions of fruit temperature on sunny days correlated strongly with the actual values (R2 = 0.91) and had a root mean-square error of ≈2 °C. Among the parameters tested, ambient air temperature and light intensity had the greatest impact on fruit temperature, whereas wind speed and fruit size had less impact, and relative humidity had no impact. Cooling efficiency was estimated successfully under different sprinkler cooling intervals by incorporating a water application factor that was calculated based on the amount of water applied and the time required for water to evaporate from the fruit surface between the intervals. The results indicate that water temperature and nozzle flow rate affected the extent to which cooling with sprinklers reduced fruit temperature. However, prolonging the runtime of the sprinklers did not guarantee lower temperatures during cooling, because cooling efficiency declined as the temperature of the fruit approached the temperature of the irrigation water. Users could incorporate the model into weather forecast programs to predict the incidence of heat damage and could use it to make cooling decisions in commercial blueberry fields.


Sign in / Sign up

Export Citation Format

Share Document