scholarly journals Growth and Bioactive Compound Synthesis in Cultivated Lettuce Subject to Light-quality Changes

HortScience ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 584-591 ◽  
Author(s):  
Ki-Ho Son ◽  
Jin-Hui Lee ◽  
Youngjae Oh ◽  
Daeil Kim ◽  
Myung-Min Oh ◽  
...  

This study aimed to determine the effect of changes in light quality on the improvement of growth and bioactive compound synthesis in red-leaf lettuce (Lactuca sativa L. ‘Sunmang’) grown in a plant factory with electrical lighting. Lettuce seedlings were subjected to 12 light treatments combining five lighting sources: red (R; 655 nm), blue (B; 456 nm), and different ratios of red and blue light combined with three light-emitting diodes [LEDs (R9B1, R8B2, and R6B4)]. Treatments were divided into control (continuous irradiation of each light source for 4 weeks), monochromatic (changing from R to B at 1, 2, or 3 weeks after the onset of the experiments), and combined (changing from R9B1 to R8B2 or R6B4 at 2 or 3 weeks after the onset of the experiments). Growth and photosynthetic rates of lettuce increased with increasing ratios of red light, whereas chlorophyll and antioxidant phenolic content decreased with increasing ratios of red light. Individual phenolic compounds, including chlorogenic, caffeic, chicoric, and ferulic acids, and kaempferol, showed a similar trend to that of total phenolics. Moreover, transcript levels of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) genes were rapidly upregulated by changing light quality from red to blue. Although the concentration of bioactive compounds in lettuce leaves enhanced with blue light, their contents per lettuce plant were more directly affected by red light, suggesting that biomass as well as bioactive compounds’ accumulation should be considered to enhance phytochemical production. In addition, results suggested that growth and antioxidant phenolic compound synthesis were more sensitive to monochromatic light than to combined light variations. In conclusion, the adjustment of light quality at a specific growth stage should be considered as a strategic tool for improving crop yield, nutritional quality, or both in a plant factory with electrical lighting.


Author(s):  
Xiao-ya Liu ◽  
Yu Hong ◽  
Wen-ping Gu

Abstract Using saline-alkali leachate to cultivate microalgae is an effective way to realize the utilization of wastewater and alleviate the shortage of water resources. Light source is usually used as an optimized parameter to further improve the cultivation efficiency of microalgae. In this work, the influence of light qualities on the growth and high-valued substances accumulation of Chlorella sp. HQ in coastal saline-alkali leachate were investigated. The specific growth rate of Chlorella in coastal saline-alkali leachate was 0.27–0.60 d−1. At the end of cultivation, the algal density under blue light reached 8.71 ± 0.15 × 107 cells·mL−1, which was significantly higher than the other light groups. The lipid content in the biomass was 29.31–62.95%, and the highest lipid content and TAGs content were obtained under red light and blue-white mixed light, respectively. Percentages of total chlorophylls (0.81–1.70%) and carotenoids (0.08–0.25%) were obtained in the final biomass of the coastal saline-alkali leachate. In addition, the contents of photosynthetic pigments and three high-valued products under mixed light were higher than those of monochromatic light, and the protein, total sugar and starch content under blue-red mixed light was 1.52–3.76 times, 1.54–3.68 times and 1.06–3.35 times of monochromatic blue light and red light, respectively.



RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4707-4715 ◽  
Author(s):  
Qiwei Zhang ◽  
Haiqin Sun ◽  
Tao Kuang ◽  
Ruiguang Xing ◽  
Xihong Hao

Materials emitting red light (∼611 nm) under excitation with blue light (440–470 nm) are highly desired for fabricating high-performance white light-emitting diodes (LEDs).



2017 ◽  
Vol 69 (1) ◽  
pp. 93-101
Author(s):  
Zexiong Chen ◽  
Juan Lou

Light is the source of energy for plants. Light wavelengths, densities and irradiation periods act as signals directing morphological and physiological characteristics during plant growth and development. To evaluate the effects of light wavelengths on tomato growth and development, Solanum lycopersicum (cv. micro-Tom) seedlings were exposed to different light-quality environments, including white light and red light supplemented with blue light (at ratios of 3:1 and 8;1, respectively). Tomatoes grown under red light supplemented with blue light displayed significantly shorter stem length, a higher number of flower buds and rate of fruit set, but an extremely late flowering compared to white-light-grown plants. To illustrate the mechanism underlying the inhibition of stem growth and floral transition mediated by red/blue light, 10 trehalose-6-phosphate synthase (TPS) genes were identified in tomato, and bioinformatics analysis was performed. qRT-PCR analysis showed that SlTPSs were expressed widely throughout plant development and SlTPS1 was expressed at extremely high levels in stems and buds. Further analysis of several flowering-associated genes and microRNAs showed that the expressions of SlTPS1, SlFT and miR172 were significantly downregulated in tomato grown under red and blue light compared with those grown under white light, whereas miR156 transcript levels were increased. A regulatory model underlying vegetative growth and floral transition regulated by light qualities is presented. Our data provide evidence that light quality strongly affects plant growth and phase transition, most likely via the TPS1-T6P signaling pathway.



2020 ◽  
Vol 61 (5) ◽  
pp. 933-941
Author(s):  
Xiaoying Liu ◽  
Chunmei Xue ◽  
Le Kong ◽  
Ruining Li ◽  
Zhigang Xu ◽  
...  

Abstract We report here the interactive effects of three light qualities (white, red and blue) and three growth temperatures (16�C, 22�C and 28�C) on rosette growth, hypocotyl elongation and disease resistance in Arabidopsis thaliana. While an increase in temperature promotes hypocotyl elongation irrespective of light quality, the effects of temperature on rosette growth and disease resistance are dependent on light quality. Maximum rosette growth rate under white, red and blue light are observed at 28�C, 16�C and 22�C, respectively. The highest disease resistance is observed at 16�C under all three light conditions, but the highest susceptibility is observed at 28�C for white light and 22�C for red and blue light. Interestingly, rosette growth is inhibited by phytochrome B (PHYB) under blue light at 28�C and by cryptochromes (CRYs) under red light at 16�C. In addition, disease resistance is inhibited by PHYB under blue light and promoted by CRYs under red light. Therefore, this study reveals a complex interaction between light and temperature in modulating rosette growth and disease resistance as well as the contribution of PHYB and CRY to disease resistance.



2019 ◽  
Vol 11 (4) ◽  
pp. 434 ◽  
Author(s):  
Linnéa Ahlman ◽  
Daniel Bånkestad ◽  
Torsten Wik

Using light emitting diodes (LEDs) for greenhouse illumination enables the use of automatic control, since both light quality and quantity can be tuned. Potential candidate signals when using biological feedback for light optimisation are steady-state chlorophyll a fluorescence gains at 740 nm, defined as the difference in steady-state fluorescence at 740 nm divided by the difference in incident light quanta caused by (a small) excitation of different LED colours. In this study, experiments were conducted under various background light (quality and quantity) to evaluate if these fluorescence gains change relative to each other. The light regimes investigated were intensities in the range 160–1000 μ mol   m − 2   s − 1 , and a spectral distribution ranging from 50% to 100% red light. No significant changes in the mutual relation of the fluorescence gains for the investigated LED colours (400, 420, 450, 530, 630 and 660 nm), could be observed when the background light quality was changed. However, changes were noticed as function of light quantity. When passing the photosynthesis saturate intensity level, no further changes in the mutual fluorescence gains could be observed.



Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1082 ◽  
Author(s):  
Wei Gao ◽  
Dongxian He ◽  
Fang Ji ◽  
Sen Zhang ◽  
Jianfeng Zheng

To achieve clean and high-quality spinach production, the effects of daily light integral (DLI) and light spectrum on growth, nutritional quality, and energy yield of hydroponic spinach (Spinacia oleracea L.) were investigated in a closed plant factory under light-emitting diode (LED) lighting. The hydroponic spinach plants were grown under 16 combinations of four levels of DLI (11.5, 14.4, 17.3, and 20.2 mol m−2 day−1) with four light spectra: LED lamps with ratio of red light to blue light (R:B ratio) of 0.9, 1.2, and 2.2 and fluorescent lamps with R:B ratio of 1.8 as control. The results show that total fresh and dry weights, energy yield, and light energy use efficiency (LUE) of harvested spinach were higher under D17.3-L1.2 treatment compared to other treatments. The higher net photosynthetic rates were shown at DLI of 17.3 mol m−2 day−1 regardless of light quality. Higher vitamin C contents of spinach in all LED treatments were obtained compared with the control. L1.2 treatments with higher fraction of blue light led to more vitamin C content, lower nitrate content, and higher LUE independent of DLI. L2.2 treatment with more fraction of red light was beneficial to reduce oxalate accumulation. Power consumption based on increased total fresh weight under LED lamps with R:B ratio of 1.2 in different DLIs was over 38% lower than that under the fluorescent lamps and 1.73 kWh per 100 g FW at DLI of 17.3 mol m−2 day−1. In conclusion, lighting environment in DLI of 17.3 mol m−2 day−1 using LED lamps with R:B ratio of 1.2 is suggested for the design of a LED plant factory for hydroponic spinach production.



Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1017
Author(s):  
Guem-Jae Chung ◽  
Jin-Hui Lee ◽  
Myung-Min Oh

This study aimed to explore the suitable light quality condition for ex vitro acclimation of M9 apple plantlets. Light quality treatments were set as followed; monochromatic LEDs (red (R), green (G), blue (B)) and polychromatic LEDs (R:B = 7:3, 8:2 and 9:1; R:G:B = 6:1:3, 7:1:2 and 8:1:1). Plant height of R, R9B1, and R8G1B1 treatments were significantly higher than the other treatments. The number of leaves and SPAD value of B were significantly higher than the other treatments. Root fresh weights of R9B1 and R7G1B2 treatments showed an increase of at least 1.7-times compared to R, G and R8B2. R8G1B1 accumulated higher starch contents than the other treatments. Photosynthetic rate of R9B1 and R8B2 were significantly higher than the other treatments. In terms of stomatal conductance and transpiration rate, treatments with high blue ratio such as B, R7B3 had higher values. Rubisco concentration was high in R and B among monochromatic treatments. In conclusion, red light was effective to increase photosynthetic rate and biomass and blue light increased chlorophyll content and stomatal conductance. Therefore, for R9B1 and R8G1B1, a mixture of high ratio of red light with a little blue light would be proper for the acclimation of in vitro-propagated apple rootstock M9 plantlets to an ex vitro environment.



Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1349-1357 ◽  
Author(s):  
A. Suthaparan ◽  
A. Stensvand ◽  
K. A. Solhaug ◽  
S. Torre ◽  
K. H. Telfer ◽  
...  

This study demonstrates that the spectral quality of radiation sources applied with ultraviolet-B (UV-B; background radiation) affects the suppression of cucumber powdery mildew (Podosphaera xanthii) by UV-B. Suppression provided by daily UV-B exposure of 1 W/m2 for 10 min was greatest in the presence of red light or by a complete lack of background light, and powdery mildew suppression was least in the presence of ultraviolet-A (UV-A) or blue radiation compared with plants exposed only to 16 h of daily natural light supplemented with high-pressure sodium lamps that supply broad-spectrum radiation with peaks in the yellow-orange region. Exposure of powdery mildew-inoculated plants to supplemental red light without UV-B, beginning at the end of the daylight period, also reduced disease severity; however, supplemental blue light applied in the same fashion had no effect. Daily application of UV-B at 1 W/m2 beginning on the day of inoculation significantly reduced the severity of powdery mildew to 15% compared with 100% severity on control plants. Maximum suppression of powdery mildew was observed following 15 min of exposure to UV-B (1.1% severity compared with 100% severity on control plants) but exposure time had to be limited to 5 to 10 min to reduce phytotoxicity. There was no additional disease suppression when plants were exposed to UV-B beginning 2 days prior to inoculation compared with plants exposed to UV-B beginning on the day of inoculation. UV-B inhibited germination, infection, colony expansion, and sporulation of P. xanthii. The results suggest that efficacy of UV-B treatments, alone or in combination with red light, against P. xanthii can be enhanced by exposure of inoculated plants to these wavelengths of radiation during the night, thereby circumventing the counteracting effects of blue light and UV-A radiation. The effect of UV-B on powdery mildew seemed to be directly upon the pathogen, rather than induced resistance of the host. Night exposure of plants to 5 to 10 min of UV-B at 1 W/m2 and inexpensive, spectral-specific, light-emitting diodes may provide additional tools to suppress powdery mildews of diverse greenhouse crops.



Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1079
Author(s):  
Lei Zhang ◽  
Gaiping Wang ◽  
Guibin Wang ◽  
Fuliang Cao

Light quality is a key environmental factor affecting plant growth and development. In this study, RNA-seq technology was used to explore the molecular mechanisms of ginkgo metabolism under different monochromatic lights. Leaves were used for transcriptome sequencing analysis after being irradiated by red, blue, and white LED lights. After treatment, 2040 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) analysis showed that the DEGs were annotated into 49 terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that 736 DEGs were enriched in 100 metabolic pathways, and 13 metabolic pathways were significantly enriched, especially ‘phenylpropanoid biosynthesis’ and ‘flavonoid biosynthesis’. Further analysis of DEGs expression in the two pathways showed that Ginkgo biloba adapts to blue light mainly by promoting the expression of GbFLS to synthesize quercetin, kaempferol, and myncetin, and adapts to red light by promoting the expression of GbDFR to synthesize leucocyanidin. Nine DEGs were randomly selected for qRT-PCR verification, and the gene expression results were consistent with that of transcriptome sequencing. In conclusion, this study is the first to explore the molecular mechanism of ginkgo in response to different monochromatic lights, and it will lay a foundation for the research and application of light quality in the cultivation of leaf-use G. biloba.



2000 ◽  
Vol 125 (1) ◽  
pp. 31-35 ◽  
Author(s):  
Uulke van Meeteren ◽  
Annie van Gelder

When compared with exposure to darkness, exposing Hibiscus rosa-sinensis L. `Nairobi' plants to red light (635 to 685 nm, 2.9 μmol·m-2·s-1) delayed flower bud abscission, while exposure to far-red light (705 to 755 nm, 1.7 μmol·m-2·s-1) accelerated this process. Flower bud abscission in response to light quality appears to be controlled partly by the presence of leaves. The delay of bud abscission was positively correlated to the number of leaves being exposed to red light. Excluding the flower buds from exposure to red or far-red light, while exposing the remaining parts of the plants to these light conditions, did not influence the effects of the light exposure on bud abscission. Exposing only the buds to red light by the use of red light-emitting diodes (0.8 μmol·m-2·s-1) did not prevent dark-induced flower bud abscission. Exposing the whole plants, darkness or far-red light could only induce flower bud abscission when leaves were present; bud abscission was totally absent when all leaves were removed. To prevent flower bud abscission, leaves had to be removed before, or at the start of, the far-red light treatment. These results suggest that in darkness or far-red light, a flower bud abscission-promoting signal from the leaves may be involved.



Sign in / Sign up

Export Citation Format

Share Document