scholarly journals Growing Saffron Crocus in the Northeastern United States: Effects of Winter Protection and Planting Density

2021 ◽  
pp. 1-8
Author(s):  
Rahmatallah Gheshm ◽  
Rebecca Nelson Brown

Saffron is well known as the most expensive spice in the world by weight. It is the dried stigmas of the saffron crocus (Crocus sativus). Besides being well known as a culinary spice, saffron is also important in the pharmaceutical, cosmetic, and dye industries. Saffron crocus is cultivated in a wide range of environments, from the Mediterranean to the Middle East, and even to northern India’s subtropical climate. Saffron crocus is an environmentally friendly and low-input crop, making it a perfect match for low-input and organic farming, and sustainable agricultural systems. The objective of this study was to evaluate the possibility of producing saffron in New England. The study was conducted from Sept. 2017 to Dec. 2019 at the University of Rhode Island. Two different corm planting densities and two winter protection methods were evaluated. In 2018, corm planting density did not affect the number of flowers per unit area or total stigma yields, but flowers from the low-density plots produced significantly (P < 0.05) heavier pistils than flowers from the high-density plots. In 2019, planting density had no effect on flower number, stigma yield, or pistil dry weight. In 2018, flower number, stigma yield, and pistil dry weight were similar to subplots that had been covered with low tunnels the previous winter and subplots that had not been covered. However, in 2019, the plants in the subplots that remained exposed during the winter produced significantly more (P < 0.05) flowers than the plants in the subplots that were in low tunnels for the winter. Saffron yields followed the same pattern, with the unprotected subplots yielding 57% more than the protected subplots (P < 0.05). These data indicate that winter protection is not beneficial for saffron crocus production in Rhode Island. The use of winter protection increases production costs and can decrease yields.

2010 ◽  
Vol 20 (3) ◽  
pp. 612-619
Author(s):  
Sabine R. Green ◽  
Geno A. Picchioni ◽  
Leigh W. Murray ◽  
Marisa M. Wall

Field-grown cut and dried flowers could provide a high-value crop selection for New Mexico. We conducted a 1-year field study to evaluate flower yield and quality characteristics of common globe amaranth (Gomphrena globosa), ‘Strawberry Fields’ globe amaranth (Gomphrena haageana), cockscomb celosia (Celosia argentea var. cristata ‘Chief Mix’), and wheat celosia (Celosia spicata ‘Pink Candle’). Within-row spacing of 15 or 20 cm combined with two-row or three-row per bed plantings resulted in field planting densities ranging from 66,670 to 120,010 plants/ha of common globe amaranth and ‘Strawberry Fields’ globe amaranth, and 100,005 to 200,010 plants/ha of cockscomb and wheat celosia. All but cockscomb celosia produced four harvests that began 22 May and ended 18 Oct., depending on species. Both globe amaranth species had a 5- to 6-month harvest season, two to three midseason to late-season peak harvests, and over 1000 harvested stems totaling 1.4 to 1.8 kg dry weight per 1.5-m2 plot across the season. Both celosia species had a 4.5-month harvest season, one early summer peak harvest, and fewer than 300 harvested stems totaling 0.6 to 0.7 kg dry weight per plot for the year. Seasonally progressive increases in flowering stem length of both globe amaranth species and wheat celosia, and in flowering stem diameter of both globe amaranth species and cockscomb celosia, were observed. Flowering head size of both globe amaranth species and of wheat celosia varied little with harvest season, whereas the head diameter of cockscomb celosia increased with the season. Postharvest flower retention after mechanical impact was about 2% higher for common globe amaranth than it was for ‘Strawberry Fields’ globe amaranth, decreased by about 6% from early to later harvests for both celosia species, and was inversely related to the head size of both globe amaranth species and cockscomb celosia. Despite the wide range in planting density, the density effect was largely limited to cockscomb celosia. For that species, three-row planting (high density) increased the total number of spray flower (multiple head) stems, provided longer stems later into the season and wider heads midway into the season, and prolonged the production of spray stems (15-cm spacing only). Results demonstrate that these four species are excellent candidates as new specialty crops in semiarid conditions.


HortScience ◽  
2019 ◽  
Vol 54 (5) ◽  
pp. 856-864 ◽  
Author(s):  
Yanjun Guo ◽  
Terri Starman ◽  
Charles Hall

This study analyzed the effects of two ranges of drying down of substrate moisture content (SMC) before re-watering on plant growth and development, postproduction quality, and economic value of bedding plants grown in 1.67-L containers during greenhouse production. The two SMC treatments were wide-range (WR) SMC (WR-SMC) for dry-down from container capacity (CC) of 54% SMC dried down to 20% SMC or narrow-range (NR) SMC (NR-SMC) for dry-down from CC of 54% SMC dried down to 40% SMC. Six bedding plant cultivars were used [Solenostemon scutellarioides ‘French Quarter’ (coleus); Petunia ×hybrida ‘Colorworks Pink Radiance’ (petunia); Lantana camara ‘Lucky Flame’ (lantana); Impatiens ×hybrida ‘Sunpatiens Compact Hot Coral’ (SCC); ‘Sunpatiens Spreading Lavender’ (SSL) (impatiens); and Salvia splendens ‘Red Hot Sally II’ (salvia)]. Shoot dry weight was reduced with WR-SMC on petunia, lantana, impatiens SCC, and salvia at the end of production. With WR-SMC, the petunia and impatiens SCC root ball coverage percentages were greater on the bottom of the container, whereas those of impatiens SSL and salvia were reduced. The WR-SMC increased petunia postproduction quality by increasing the flower number. Lantana and impatiens SCC inflorescence/flower and/or bud number were reduced with WR-SMC. The impatiens SSL flower number was unaffected by SMC treatment. Salvia grown with WR-SMC had increased postproduction quality. WR-SMC reduced postproduction water potential in petunia, lantana, and coleus, suggesting that plants with WR-SMC during production were acclimated to reduced irrigation administered during postproduction. WR-SMC saved labor due to less frequent watering and overhead-associated costs due to reduced bench space, with the exception of coleus and impatiens SSL, which used the same bench space as NR-SMC. Considering production and/or postproduction quality, using WR-SMC during greenhouse production is beneficial as an irrigation method for coleus, petunia, impatiens SSL, and salvia, but not for impatiens SCC or lantana grown in 1.67-L containers.


2014 ◽  
Vol 1 (1) ◽  
pp. 25-29
Author(s):  
Rahim Mohammadian ◽  
Behnam Tahmasebpour ◽  
Peyvand Samimifar

A factorial experiment was conducted with a completely randomized design to evaluate the effects of planting date and density on calendula herbs and peppermint. It had 3 replicates and was done in Khosroshahr research farm, Tabriz in 2006. Under studied factors were: 3 planting dates (10 May, 25 May and 10 June) in 4 densities (25, 35, 45, 55) of the plant in square meters. The results of variance a nalysis showed that there was 1% probability significant difference between the effects of planting date and bush density on the leave number, bush height and the bush dry weight. But the mutual effect of the plant date in mentioned traits density was insignificant. Regarding the traits mean comparison, the total maximum dry weight was about the 55 bush density in mm. Also, the bush high density in mm causes the bush growth and its mass reduction. When there is the density grain, the flower number will increase due to bush grain in surface unit. Overall, we can conclude that 10 June planting and 45 bush density in mm is the most suitable items and results in favored production with high essence for these crops.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leilah Krounbi ◽  
Akio Enders ◽  
John Gaunt ◽  
Margaret Ball ◽  
Johannes Lehmann

AbstractThe conversion of dairy waste with high moisture contents to dry fertilizers may reduce environmental degradation while lowering crop production costs. We converted the solid portion of screw-pressed dairy manure into a sorbent for volatile ammonia (NH3) in the liquid fraction using pyrolysis and pre-treatment with carbon dioxide (CO2). The extractable N in manure biochar exposed to NH3 following CO2 pre-treatment reached 3.36 g N kg−1, 1260-fold greater extractable N than in untreated manure biochar. Ammonia exposure was 142-times more effective in increasing extractable N than immersing manure biochar in the liquid fraction containing dissolved ammonium. Radish and tomato grown in horticultural media with manure biochar treated with CO2 + NH3 promoted up to 35% greater plant growth (dry weight) and 36–83% greater N uptake compared to manure biochar alone. Uptake of N was similar between plants grown with wood biochar exposed to CO2 + NH3, compared to N-equivalent treatments. The available N in dairy waste in New York (NY) state, if pyrolyzed and treated with NH3 + CO2, is equivalent to 11,732–42,232 Mg N year−1, valued at 6–21.5 million USD year−1. Separated dairy manure treated with CO2 + NH3 can offset 23–82% of N fertilizer needs of NY State, while stabilizing both the solid and liquid fraction of manure for reduced environmental pollution.


2021 ◽  
Vol 325 (4) ◽  
pp. 502-515
Author(s):  
S.F. Komulaynen

The freshwater pearl mussel Margaritifera margaritifera (Linnaeus,1758) is endangered in Europe and is now listed in the Red Data Book of many countries and regions. The diet of the species in the Syskyänjoki River (a tributary of Lake Ladoga) has been studied. The contents of the intestine generally correspond to the composition of seston, and include organic detritus, filamentous and unicellular algae, fragments of invertebrates and macrophyte tissues mixed with silt and sand. The total biomass of the intestinal contents of varied from 0.8 to 30.6 mg per organism (absolutely dry weight). Margaritifera margaritifera consumes a wide range of particles, from 0.5 μm3 (bacteria and unicellular algae) to 200 000 μm3 (fragments of invertebrates and macrophyte tissues). About 90–95% (by volume) of the intestinal contents was consisted by fine organic detritus. The food composition did not differ significantly for mollusks of different sexes and size. In the intestinal contents, 63 taxa of algae were identified. The number of algal species in the content of one intestine varied from 3 to 17, with their abundance from 250 to 9560 cells per organism. The most abundant and constant in the contents of the intestines are unicellular algae. Diatoms are the most diverse, they make up 50.8% of the total number of species.


1996 ◽  
Vol 6 ◽  
pp. 163-166
Author(s):  
J. Van den Bosch ◽  
C.F. Mercer

Root-knot nematode (Meloidogyne sp.) reduces growth and nutrition of white clover (Trifolium repens L.) in New Zealand, and breeding resistant cultivars (with low galls per gram of root) is the preferred control method. Resistant and susceptible selections were bred from a wide range of white clover lines for three generations. In the third generation there were significant differences between seed lines from the selections for number of galls, root dry weight, visual growth score and galls/gram of root dry weight. Resistant selections had 43% of the susceptible selections' galls per gram, and 50% of the number of galls. Germplasm showing resistance to Meloidogyne spp. in the USA showed partial resistance to the local Meloidogyne sp. Two resistant and two susceptible genotypes were also compared for nematode egg production; resistant genotypes had a mean of 3,460 eggs/plant, compared to 25,030 for susceptible genotypes. Keywords: breeding, Meloidogyne sp., resistance, rootknot nematode, screening, selection, Trifolium repens, white clover


2008 ◽  
Vol 68 (4) ◽  
pp. 875-883 ◽  
Author(s):  
LH. Sipaúba-Tavares ◽  
AML. Pereira

Large-scale lab culture of Ankistrodesmus gracilis and Diaphanososma birgei were evaluated by studying the biology and biochemical composition of the species and production costs. Ankistrodesmus gracilis presented exponential growth until the 6th day, with approximately 144 x 10(4) cells.mL-1, followed by a sharp decrease to 90 x 10(4) cells.mL-1 (8th day). Algae cells tended to increase again from the 11th day and reached a maximum of 135 x 10(4) cells.mL-1 on the 17th day. D. birgei culture showed exponential growth until the 9th day with 140 x 10² individuals.L-1, and increased again as from the 12th day. Algae A. gracilis and zooplankton D. birgei contain 47 to 70% dry weight protein and over 5% dry weight carbohydrates. The most expensive items in the context of variable costs were labor and electricity. Data suggested that temperature, nutrients, light availability and culture management were determining factors on productivity. Results indicate that NPK (20-5-20) may be used directly as a good alternative for mass cultivation when low costs are taken into account, promoting adequate growth and nutritional value for cultured A. gracilis and D. birgei.


2011 ◽  
Vol 275 ◽  
pp. 204-207 ◽  
Author(s):  
Lenka Fusova ◽  
Pawel Rokicki ◽  
Zdeněk Spotz ◽  
Karel Saksl ◽  
Carsten Siemers

Nickel-base superalloys like Alloy 625 are widely used in power generation applications due to their unique properties especially at elevated temperatures. During the related component manufacturing for gas turbines up to 50% of the material has to be removed by metal cutting operations like milling, turning or drilling. As a result of high strength and toughness the machinability of Alloy 625 is generally poor and only low cutting speeds can be used. High-speed cutting of Alloy 625 on the other hand gets more important in industry to reduce manufacturing times and thus production costs. The cutting speed represents one of the most important factors that have influences on the tool life. The aim of this study is the analyses of wear mechanisms occurring during machining of Alloy 625. Orthogonal cutting experiments have been performed and different process parameters have been varied in a wide range. New and worn tools have been investigated by stereo microscopy, optical microscopy and scanning electron microscopy. Energy-dispersive X-ray analyses were used for the investigation of chemical compositions of the tool's surface as well as the nature of reaction products formed during the cutting process. Wear mechanisms observed in the machining experiments included abrasion, fracture and tribochemical effects. Specific wear features appeared depending on the mechanical and thermal conditions generated in the wear zones.


2022 ◽  
Vol 14 (2) ◽  
pp. 274
Author(s):  
Mohamed Marzhar Anuar ◽  
Alfian Abdul Halin ◽  
Thinagaran Perumal ◽  
Bahareh Kalantar

In recent years complex food security issues caused by climatic changes, limitations in human labour, and increasing production costs require a strategic approach in addressing problems. The emergence of artificial intelligence due to the capability of recent advances in computing architectures could become a new alternative to existing solutions. Deep learning algorithms in computer vision for image classification and object detection can facilitate the agriculture industry, especially in paddy cultivation, to alleviate human efforts in laborious, burdensome, and repetitive tasks. Optimal planting density is a crucial factor for paddy cultivation as it will influence the quality and quantity of production. There have been several studies involving planting density using computer vision and remote sensing approaches. While most of the studies have shown promising results, they have disadvantages and show room for improvement. One of the disadvantages is that the studies aim to detect and count all the paddy seedlings to determine planting density. The defective paddy seedlings’ locations are not pointed out to help farmers during the sowing process. In this work we aimed to explore several deep convolutional neural networks (DCNN) models to determine which one performs the best for defective paddy seedling detection using aerial imagery. Thus, we evaluated the accuracy, robustness, and inference latency of one- and two-stage pretrained object detectors combined with state-of-the-art feature extractors such as EfficientNet, ResNet50, and MobilenetV2 as a backbone. We also investigated the effect of transfer learning with fine-tuning on the performance of the aforementioned pretrained models. Experimental results showed that our proposed methods were capable of detecting the defective paddy rice seedlings with the highest precision and an F1-Score of 0.83 and 0.77, respectively, using a one-stage pretrained object detector called EfficientDet-D1 EficientNet.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4478 ◽  
Author(s):  
Vinicius H. De Oliveira ◽  
Mark Tibbett

BackgroundMetal contamination in soils affects both above- and belowground communities, including soil microorganisms. Ectomycorrhizal (ECM) fungi are an important component in belowground community and tolerant strains have great potential in enhancing plant-based remediation techniques. We assessed cadmium and zinc toxicity in five ECM species in liquid media (Hebeloma subsaponaceum;H. cylindrosporum;H. crustuliniforme;Sclerodermasp.;Austroboletus occidentalis) and investigated the potential of Zn to alleviate Cd toxicity. Due to highly divergent results reported in the literature, liquid and solid media were compared experimentally for the first time in terms of differential toxicity thresholds in Cd and Zn interactions.MethodsA wide range of Cd and Zn concentrations were applied to ectomycorrhizal fungi in axenic cultures (in mg L−1): 0; 1; 3; 9; 27; 81; 243 for the Cd treatments, and 0; 1; 30; 90; 270; 810; 2,430 for Zn. Combined Zn and Cd treatments were also applied toH. subsaponaceumandSclerodermasp. Dry weight was recorded after 30 days, and in case of solid medium treatments, radial growth was also measured.Results and DiscussionAll species were adversely affected by high levels of Cd and Zn, andA. occidentaliswas the most sensitive, with considerable biomass decrease at 1 mg L−1Cd, whileSclerodermasp. andH. subsaponaceumwere the most tolerant, which are species commonly found in highly contaminated sites. Cd was generally 10 times more toxic than Zn, which may explain why Zn had little impact in alleviating Cd effects. In some cases, Cd and Zn interactions led to a synergistic toxicity, depending on the concentrations applied and type of media used. Increased tolerance patterns were detected in fungi grown in solid medium and may be the cause of divergent toxicity thresholds found in the literature. Furthermore, solid medium allows measuring radial growth/mycelial density as endpoints which are informative and in this case appeared be related to the high tolerance indices found inH. subsaponaceum.


Sign in / Sign up

Export Citation Format

Share Document