scholarly journals Cellulase Activity and Gene Expression in Citrus Fruit Abscission Zones during and after Ethylene Treatment

1998 ◽  
Vol 123 (5) ◽  
pp. 781-786 ◽  
Author(s):  
William C. Kazokas ◽  
Jacqueline K. Burns

Mature and immature `Valencia' orange [Citrus sinensis (L.) Osbeck] and immature `Valencia' orange and `Tahiti' lime (Citrus latifolia Tan.) fruit with attached pedicels were treated with 8 μL·L-1 ethylene for periods up to 24 hours. Endo-β-1,4-glucanase (cellulase) activity and gene expression were determined in fruit abscission zones during and after ethylene exposure. Cellulase activities were not detected in mature `Valencia' orange and immature `Tahiti' lime fruit abscission zones immediately following harvest and after 6 hours of ethylene treatment. After 12 hours of ethylene treatment, cellulase activity increased and was highest after 24 hours. Cellulase gene expression preceded the rise in cellulase activity and was detectable after 6 hours of ethylene treatment, but then declined after 12 hours. Following transfer to air storage, abscission zone cellulase activity in mature `Valencia' fruit remained high, whereas activity in immature `Tahiti' fruit declined. After 168 hours air storage, activity in abscission zones of mature `Valencia' fruit decreased slightly, but activity in abscission zones of immature `Tahiti' lime fruit increased to the highest level. Expression of abscission zone cellulase gene Cel-a1 in abscission zones of mature `Valencia' fruit markedly increased after transfer to air and was highest after 48 hours air storage. Cel-a1 expression returned to low levels after 168 hours of air storage, but expression of cellulase gene Cel-b1 remained at low levels throughout the air storage period. Expression of Cel-a1 and Cel-b1 declined in fruit abscission zones of immature `Valencia' and `Tahiti' lime fruit upon transfer to air. After 168 hours of air storage, expression of Cel-a1 again rose to high levels but Cel-b1 remained low. The results suggest that differences in cellulase activity and gene expression measured in mature and immature fruit abscission zones during ethylene treatment and subsequent air storage may, in part, explain the differential response of mature and immature fruit to abscission agents.

1972 ◽  
Vol 50 (7) ◽  
pp. 1465-1471 ◽  
Author(s):  
Michael B. Jackson ◽  
Ielene B. Morrow ◽  
Daphne J. Osborne

When treated with ethylene, mature fruits of the squirting cucumber (Ecballium elaterium (L.) A. Rich) abscind and dehisce prematurely. Abscission of male flowers is also accelerated by ethylene. Visible signs of senescence, a rise in ethylene production, and reduced carbon dioxide production always precede abscission or dehiscence in untreated fruits and flowers. The amounts of diffusible cellulase increase in tissues on both sides of the fruit abscission zone after exposure to ethylene. Anatomical features of this abscission zone are described.The leaves of Ecballium do not abscind although the blade and petiole produce large amounts of ethylene at senescence, nor do they separate when ethylene is supplied. Ethylene treatment of attached fruit peduncles accelerates their rate of elongation in the growing zone below the apical hook. The regulation of growth and abscission in these organs is discussed.


HortScience ◽  
2002 ◽  
Vol 37 (2) ◽  
pp. 348-352 ◽  
Author(s):  
Rongcai Yuan ◽  
Ulrich Hartmond ◽  
Walter J. Kender

Effects of NAA, TIBA, ethephon, and CMN-Pyrazole on fruit detachment force (FDF) of mature `Valencia' and `Hamlin' orange [Citrus sinensis (L.) Osb.] fruit were examined in 2000 and 2001. NAA effectively inhibited the reduction in FDF or fruit abscission caused by ethephon when applied to the abscission zone 24 hours before ethephon application, but had no significant effect when applied to the fruit without contacting the abscission zone, or to the peduncle ≈4 cm above the abscission zone. TIBA, an auxin transport inhibitor, decreased FDF of mature fruit and promoted fruit abscission when applied alone as a spray to the canopy or directly to the fruit peduncle. This response was dependent on TIBA concentration. TIBA was more effective when applied in combination with ethephon or CMN-Pyrazole than alone. These results are consistent with our previous data that endogenous auxin concentration in the abscission zone of mature `Valencia' orange fruit is one of the factors controlling the sensitivity and thus the responsiveness of the abscission zone of mature fruit to abscission chemicals. Chemical names used: 5-chloro-3-methyl-4-nitro-pyrazole (CMN-Pyrazole); 2-chloroethylphosphonic acid (ethephon); naphthalene acetic acid (NAA); 2,3,5-triiodobenzoic acid (TIBA).


2003 ◽  
Vol 128 (3) ◽  
pp. 302-308 ◽  
Author(s):  
Rongcai Yuan ◽  
Walter J. Kender ◽  
Jacqueline K. Burns

The effects of removal of young fruit and application of auxin transport inhibitors on endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations were examined in relation to the response of mature `Valencia' orange [Citrus sinensis (L.) Osb.] fruit to abscission materials. ABA concentrations were increased in the fruit abscission zone and pulp but not in the pedicel, peel, or seed of mature fruit by removal of young fruit during the period of reduced response of mature fruit to abscission materials in early May. However, removal of young fruit slightly decreased IAA concentrations in leaves and the abscission zone and pedicel of mature fruit but had no effect on the IAA concentrations in the peel, pulp, or seed of mature fruit. Young fruit had higher IAA concentrations in the abscission zone and pedicel than mature fruit. Application of 2,3,5-triiodobenzoic acid (TIBA), an IAA transport inhibitor, reduced IAA concentrations in the abscission zone of mature fruit but did not influence the IAA concentrations in the pedicel and peel when applied directly to an absorbent collar tied around the pedicel 2 cm above the fruit abscission zone during the less responsive period in early May. ABA concentrations were increased drastically in the fruit abscission zone and pedicel but not in peel by TIBA application. Applications of ABA, or IAA transport inhibitors such as naringenin, quercetin, or TIBA comparably increased the response of mature fruit to the abscission material 5-chloro-3-methyl-4-nitro-1 H-pyrazole (CMN-pyrazole) in early May. These data suggest that young fruit reduce the response of mature `Valencia' oranges to abscission materials through increasing IAA concentrations and decreasing ABA concentrations in the abscission zone of mature `Valencia' orangees.


2001 ◽  
Vol 126 (4) ◽  
pp. 420-426 ◽  
Author(s):  
Rongcai Yuan ◽  
Ulrich Hartmond ◽  
Walter J. Kender

Endogenous concentrations of IAA and ABA in the peel, pulp, seed, and abscission zone of mature `Valencia' oranges [Citrus sinesis (L.) Osbeck] were determined by high-performance liquid chromatography and enzyme-linked immunosorbent assay from early November 1998 to mid-June 1999. Ethylene production of mature `Valencia' oranges during the same period was determined by gas chromatography. IAA concentrations in the pulp and seed were three to five times lower than those in the peel over the 7-month observation period. IAA concentration in the abscission zone and peel was high from late April to mid-May, the period of less responsiveness to abscission chemicals. ABA concentration in the pulp was low over the entire observation period. ABA concentration in the abscission zone and peel was low during the less responsive period. Ethylene production was always low except for a slight increase during late December and early February. The IAA to ABA ratio was high in the fruit abscission zone during the less responsive period. Fruit detachment force of CMN-pyrazole-treated fruit was positively correlated with the ratio of endogenous IAA to ABA or endogenous IAA, but negatively to endogenous ABA in the fruit abscission zone. These data suggest the balance between IAA and ABA in the fruit abscission zone may be an important factor in determining sensitivity and thereby the response of mature `Valencia' orange fruit to abscission chemicals. Chemical names used: abscisic acid (ABA); indole-3-acetic acid (IAA); 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMN-pyrazole).


Genetics ◽  
1984 ◽  
Vol 108 (3) ◽  
pp. 651-667
Author(s):  
Douglas P Dickinson ◽  
Kenneth W Gross ◽  
Nina Piccini ◽  
Carol M Wilson

ABSTRACT Inbred strains of mice carry Ren-1, a gene encoding the thermostable Renin-1 isozyme. Ren-1 is expressed at relatively low levels in mouse submandibular gland and kidney. Some strains also carry Ren-2, a gene encoding the thermolabile Renin-2 isozyme. Ren-2 is expressed at high levels in the mouse submandibular gland and at very low levels, if at all, in the kidney. Ren-1 and Ren-2 are closely linked on mouse chromosome 1, show extensive homology in coding and noncoding regions and provide a model for studying the regulation of gene expression. An investigation of renin genes and enzymatic activity in wild-derived mice identified several restriction site polymorphisms as well as putative variants in renin gene expression and protein structure. The number of renin genes carried by different subpopulations of wild-derived mice is consistent with the occurrence of a gene duplication event prior to the divergence of M. spretus (2.75-5.5 million yr ago). This conclusion is in agreement with a prior estimate based upon comparative sequence analysis of Ren-1 and Ren-2 from inbred laboratory mice.


2000 ◽  
Vol 73 (4) ◽  
pp. 843-847 ◽  
Author(s):  
H.Mimi Zhou ◽  
Sumathi Ramachandran ◽  
Jong G Kim ◽  
Denise B Raynor ◽  
John A Rock ◽  
...  

2018 ◽  
Vol 111 (2) ◽  
pp. 373-394 ◽  
Author(s):  
Qian Liu ◽  
Jingen Li ◽  
Ranran Gao ◽  
Jinyang Li ◽  
Guoli Ma ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2226
Author(s):  
Jorge Xool-Tamayo ◽  
Yahaira Tamayo-Ordoñez ◽  
Miriam Monforte-González ◽  
José Armando Muñoz-Sánchez ◽  
Felipe Vázquez-Flota

The synthesis of the benzylisoquinoline alkaloids, sanguinarine and berberine, was monitored in Argemone mexicana L. (Papaveracea) throughout the early stages of its hypocotyl and seedling development. Sanguinarine was detected in the cotyledons right after hypocotyl emergence, and it increased continuously until the apical hook unbent, prior to the cotyledonary leaves unfolding, when it abruptly fell. In the cotyledonary leaves, it also remained at low levels. Throughout development, berberine accumulation required the formation of cotyledonary leaves, whereas it was quickly detected in the hypocotyl from the time it emerged. Interestingly, the alkaloids detected in the cotyledons could have been imported from hypocotyls, because no transcriptional activity was detected in there. However, after turning into cotyledonary leaves, important levels of gene expression were noted. Taken together, these results suggest that the patterns of alkaloid tissue distribution are established from very early development, and might require transport systems.


2021 ◽  
Vol 22 (16) ◽  
pp. 8830
Author(s):  
Karthika Sriskantharajah ◽  
Walid El Kayal ◽  
Davoud Torkamaneh ◽  
Murali M. Ayyanath ◽  
Praveen K. Saxena ◽  
...  

Apples (Malus domestica Borkh) are prone to preharvest fruit drop, which is more pronounced in ‘Honeycrisp’. Hexanal is known to improve fruit retention in several economically important crops. The effects of hexanal on the fruit retention of ‘Honeycrisp’ apples were assessed using physiological, biochemical, and transcriptomic approaches. Fruit retention and fruit firmness were significantly improved by hexanal, while sugars and fresh weight did not show a significant change in response to hexanal treatment. At commercial maturity, abscisic acid and melatonin levels were significantly lower in the treated fruit abscission zone (FAZ) compared to control. At this stage, a total of 726 differentially expressed genes (DEGs) were identified between treated and control FAZ. Functional classification of the DEGs showed that hexanal downregulated ethylene biosynthesis genes, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1-carboxylic acid oxidases (ACO3, ACO4, and ACO4-like), while it upregulated the receptor genes ETR2 and ERS1. Genes related to ABA biosynthesis (FDPS and CLE25) were also downregulated. On the contrary, key genes involved in gibberellic acid biosynthesis (GA20OX-like and KO) were upregulated. Further, hexanal downregulated the expression of genes related to cell wall degrading enzymes, such as polygalacturonase (PG1), glucanases (endo-β-1,4-glucanase), and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Our findings reveal that hexanal reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell wall integrity of FAZ cells by regulating genes involved in cell wall modifications. Thus, delayed fruit abscission by hexanal is most likely achieved by minimizing ABA through an ethylene-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document