scholarly journals Protein Changes in Response to Heat Stress in Acclimated and Nonacclimated Creeping Bentgrass

2005 ◽  
Vol 130 (4) ◽  
pp. 521-526 ◽  
Author(s):  
Yali He ◽  
Xiaozhong Liu ◽  
Bingru Huang

The acclimation of plants to moderately high temperature plays an important role in inducing plant tolerance to subsequent lethal high temperatures. This study was performed to investigate the effects of heat acclimation and sudden heat stress on protein synthesis and degradation in creeping bentgrass (Agrostis palustris Huds.). Plants of the cultivar Penncross were subjected to two temperature regimes in growth chambers: 1) heat acclimation—plants were exposed to a gradual increase in temperatures from 20 to 25, 30, and 35 °C for 7 days at each temperature level before being exposed to 40 °C for 28 days; and 2) sudden heat stress (nonacclimation)—plants were directly exposed to 40 °C for 28 days from 20 °C without acclimation through the gradual increase in temperatures. Heat acclimation increased plant tolerance to subsequent heat stress, as demonstrated by lower electrolyte leakage (relative EL) in leaves of heat-acclimated plants compared to nonacclimated plants at 40 °C. Heat acclimation induced expression of some heat shock proteins (HSPs), 57 and 54 kDa, detected in a salt-soluble form (cystoplasmic proteins), which were not present in unacclimated plants under heat stress. However, HSPs of 23, 36, and 66 kDa were induced by both sudden and gradual exposure to heat stress. In general, total protein content decreased under both heat acclimation and sudden heat stress. Cystoplasmic proteins was more sensitive to increasing temperatures, with a significant decline initiated at 25 °C, while sodium dodecyl sulphate (SDS)-soluble (membrane) protein content did not decrease significantly until temperature was elevated to 30 °C. The results demonstrated that both a gradual increase in temperature and sudden heat stress caused protein degradation and also induced expression of newly synthesized HSPs. Our results suggested that the induction of new HSPs during heat acclimation might be associated with the enhanced thermotolerance of creeping bentgrass, although direct correlation of these two factors is yet to be determined. This study also indicated that protein degradation could be associated with heat injury during either gradual increases in temperature or sudden heat stress.

2007 ◽  
Vol 132 (4) ◽  
pp. 467-472 ◽  
Author(s):  
Mahalaxmi Veerasamy ◽  
Yali He ◽  
Bingru Huang

Heat stress induces leaf senescence and causes changes in protein metabolism. The objective of this study was to investigate effects of exogenous application of a synthetic form of cytokinin, zeatin riboside (ZR), on protein metabolism associated with leaf senescence under heat stress for a cool-season grass species. Creeping bentgrass (Agrostis stolonifera L.) (cv. Penncross) plants were exposed to optimum temperature control (20/15 °C, day/night) and heat stress (35/30 °C) in growth chambers. Before heat stress treatments, foliage was sprayed with 10 μmol ZR or water (untreated) for 3 days and then once per week during 35 days of heat stress. Leaf chlorophyll content, photochemical efficiency (Fv/Fm), and soluble protein content declined, whereas protease activity increased during heat stress. Treatments with ZR helped maintain higher leaf chlorophyll content, Fv/Fm, and soluble protein content under heat stress. Protease activity in ZR-treated plants was lower than that of untreated plants. Zeatin riboside-treated plants had less severe degradation of ribulose-1,5-bisphosphate carboxylase proteins than untreated plants exposed to heat stress. In addition, ZR treatment upregulated the expression of 32- and 57-kDa proteins under heat stress conditions. These results demonstrated that the exogenous application of ZR ameliorated the negative effects of heat stress, as manifested by suppression or delay of leaf senescence. Cytokinins may have helped to alleviate heat stress injury, probably by slowing down the action of protease and by induction or upregulation of heat-shock proteins.


2005 ◽  
Vol 130 (6) ◽  
pp. 842-847 ◽  
Author(s):  
Yali He ◽  
Xiaozhong Liu ◽  
Bingru Huang

Various physiological processes may deteriorate in response to increasing temperatures, contributing to the decline in turf quality for cool-season turfgrasses during heat stress. This study was performed to investigate metabolic changes (membrane lipid peroxidation, total protein content, amino acid content, and protease activity) associated with turf quality decline for creeping bentgrass (Agrostis stolonifera Huds.) in response to gradually increasing temperatures for a short duration and prolonged exposure to lethally high temperature. Plants were subjected to increasing temperatures of 20, 25, 30, 35, and 40 °C for 7 days at each level of temperature [gradual heat stress (GHS)] or exposed to high temperature of 40 °C for 28 days [prolonged heat stress (PHS)] in growth chambers. During the GHS treatment, significant decline in turf quality occurred when plants were exposed to 30 °C for 7 days; simultaneously, malondialdehyde (MDA) content increased and total protein content in shoots decreased significantly compared to those at 20 °C. Protease activity increased at 25 °C and then decreased as temperature was elevated from 30 to 40 °C during the GHS treatment. Amino acid content decreased under GHS, beginning at 25 °C. Under the PHS treatment, turf quality declined and MDA content increased significantly, beginning at 14 days of PHS, while total protein content decreased at 7 days of PHS. Protease activity and amino acid content increased at 7 days of PHS, and then declined with longer stress duration. Our results indicated that protease activity, and amino acid and total protein content were more responsive to GHS or PHS than that of lipid peroxidation and turf quality. Changes in metabolic parameters of protease activity, amino acid and total protein content, and lipid peroxidation may contribute to leaf senescence and poor turf performance under severe or prolonged heat stress conditions for creeping bentgrass.


1988 ◽  
Vol 255 (3) ◽  
pp. R456-R463 ◽  
Author(s):  
M. N. Sawka ◽  
R. R. Gonzalez ◽  
A. J. Young ◽  
S. R. Muza ◽  
K. B. Pandolf ◽  
...  

We studied the effects of autologous erythrocyte infusion on thermoregulation and blood volume during exercise in the heat. Specifically, we wanted to determine whether heat-acclimated subjects, as well as hypohydrated subjects, would have a thermoregulatory advantage from acute polycythemia during exercise in the heat. Five heat-acclimated males attempted four heat stress tests (HSTs): two pre- and two postinfusion. Autologous erythrocyte infusion was accomplished with 500 ml of a NaCl-glucose-phosphate solution containing approximately 60% hematocrit. One HST, both pre- and postinfusion, was done while subjects were euhydrated, and one HST was done while subjects were hypohydrated (-5% of body wt). After 30 min of rest in a 20 degrees C antechamber, the HST consisted of a 120-min exposure (2 repeats of 15 min rest and 45 min walking) in a hot (35 degrees C, 45% relative humidity) environment. The findings concerning acute polycythemia in heat-acclimated subjects are summarized: 1) polycythemia increased (P less than 0.05) sweating rate and reduced (P less than 0.01) core temperature during exercise-heat stress for both euhydrated and hypohydrated subjects; 2) the erythrocyte infusion caused an increased (P less than 0.05) plasma volume and increased (P less than 0.01) blood volume; 3) the increased plasma volume was associated with an increased (P less than 0.05) total circulating protein mass; 4) the increased total circulating protein mass tended to better maintain plasma volume when hypohydrated; and 5) heat acclimation may increase extravascular protein mass. Therefore, it is concluded that erythrocyte infusion provides a thermoregulatory advantage during exercise in the heat for heat acclimated subjects when both euhydrated and hypohydrated.


1998 ◽  
Vol 84 (5) ◽  
pp. 1731-1739 ◽  
Author(s):  
Stephen S. Cheung ◽  
Tom M. McLellan

—The purpose of the present study was to determine the separate and combined effects of aerobic fitness, short-term heat acclimation, and hypohydration on tolerance during light exercise while wearing nuclear, biological, and chemical protective clothing in the heat (40°C, 30% relative humidity). Men who were moderately fit [(MF); <50 ml ⋅ kg−1 ⋅ min−1maximal O2 consumption; n = 7] and highly fit [(HF); >55 ml ⋅ kg−1 ⋅ min−1maximal O2 consumption; n = 8] were tested while they were euhydrated or hypohydrated by ∼2.5% of body mass through exercise and fluid restriction the day preceding the trials. Tests were conducted before and after 2 wk of daily heat acclimation (1-h treadmill exercise at 40°C, 30% relative humidity, while wearing the nuclear, biological, and chemical protective clothing). Heat acclimation increased sweat rate and decreased skin temperature and rectal temperature (Tre) in HF subjects but had no effect on tolerance time (TT). MF subjects increased sweat rate but did not alter heart rate, Tre, or TT. In both MF and HF groups, hypohydration significantly increased Tre and heart rate and decreased the respiratory exchange ratio and the TT regardless of acclimation state. Overall, the rate of rise of skin temperature was less, while ΔTre, the rate of rise of Tre, and the TT were greater in HF than in MF subjects. It was concluded that exercise-heat tolerance in this uncompensable heat-stress environment is not influenced by short-term heat acclimation but is significantly improved by long-term aerobic fitness.


2007 ◽  
Vol 22 (3) ◽  
pp. 157-167 ◽  
Author(s):  
H. Mason ◽  
A. Navabi ◽  
B. Frick ◽  
J. O'Donovan ◽  
D. Niziol ◽  
...  

AbstractCanadian Western Hard Red Spring (CWRS) wheat is recognized as premium quality wheat, ideal for breadmaking due to its superior milling qualities, baking characteristics and protein content. Organic wheat production is becoming more prevalent in Canada, due to increasing consumer demand for organic wheat products. Differences may exist in the baking and milling quality of wheat grown under conventional and organic management, a result of the dissimilarity between organic and conventional soil and crop management practices. Five CWRS cultivars released from 1885 to 1997 were grown under conventional and organic management and were assessed for their breadmaking potential. Several traits were investigated, including test weight, protein content, flour yield, kernel hardness and several mixograph parameters. Test weight was higher under conventional management, while no differences in protein content were observed between organic and conventionally grown wheat. Higher sodium dodecyl sulfate sedimentation (SDSS) volume, a reflection of gluten strength, was observed under conventional management, while there was a trend towards higher dough strength under organic management. Cultivars differed in grain protein, flour yield, kernel hardness and mixograph parameters, with Park and McKenzie superior to the others, particularly Red Fife, a much older cultivar. Management×cultivar interaction effects suggest that cultivars exhibit somewhat different baking characteristics when grown in the two management systems. There was no evidence that older cultivars (developed prior to the widespread use of pesticides and fertilizers) are better suited, in terms of breadmaking quality, for organic production.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5337
Author(s):  
Cheng Huang ◽  
Yulong Tian ◽  
Bingbing Zhang ◽  
Muhammad Jawad Hassan ◽  
Zhou Li ◽  
...  

Chitosan (CTS) is a deacetylated derivative of chitin that is involved in adaptive response to abiotic stresses. However, the regulatory role of CTS in heat tolerance is still not fully understood in plants, especially in grass species. The aim of this study was to investigate whether the CTS could reduce heat-induced senescence and damage to creeping bentgrass associated with alterations in antioxidant defense, chlorophyll (Chl) metabolism, and the heat shock pathway. Plants were pretreated exogenously with or without CTS (0.1 g L−1) before being exposed to normal (23/18 °C) or high-temperature (38/33 °C) conditions for 15 days. Heat stress induced detrimental effects, including declines in leaf relative water content and photochemical efficiency, but significantly increased reactive oxygen species (ROS) accumulation, membrane lipid peroxidation, and Chl loss in leaves. The exogenous application of CTS significantly alleviated heat-induced damage in creeping bentgrass leaves by ameliorating water balance, ROS scavenging, the maintenance of Chl metabolism, and photosynthesis. Compared to untreated plants under heat stress, CTS-treated creeping bentgrass exhibited a significantly higher transcription level of genes involved in Chl biosynthesis (AsPBGD and AsCHLH), as well as a lower expression level of Chl degradation-related gene (AsPPH) and senescence-associated genes (AsSAG12, AsSAG39, Asl20, and Ash36), thus reducing leaf senescence and enhancing photosynthetic performance under heat stress. In addition, the foliar application of CTS significantly improved antioxidant enzyme activities (SOD, CAT, POD, and APX), thereby effectively reducing heat-induced oxidative damage. Furthermore, heat tolerance regulated by the CTS in creeping bentgrass was also associated with the heat shock pathway, since AsHSFA-6a and AsHSP82 were significantly up-regulated by the CTS during heat stress. The potential mechanisms of CTS-regulated thermotolerance associated with other metabolic pathways still need to be further studied in grass species.


Blood ◽  
1986 ◽  
Vol 68 (4) ◽  
pp. 810-817
Author(s):  
KJ Balazovich ◽  
JE Smolen ◽  
LA Boxer

Ca2+-dependent and phospholipid-dependent protein kinase (PKC) is a receptor for and is activated by phorbol esters. This enzyme is reportedly involved in the mechanism of superoxide anion (O2-) production and the release of intracellular granule contents from human neutrophils. As previously reported by others, we found that greater than 75% of the total cellular PKC activity existed in a soluble form in untreated neutrophils and that this activity was enhanced in a dose- dependent manner by phorbol 12-myristate 13-acetate (PMA) and by phorbol 12,13-dibutyrate (PDBu). Furthermore, mezerein, an analogue of PMA that is thought to be a competitive inhibitor, did not activate PKC, and on the contrary, inhibited PMA-stimulated activity in a dose- dependent manner. Pretreatment of intact neutrophils with PMA or PDBu caused the “translocation” of PKC activity to the insoluble cell fraction; PKC translocation was not detected after mezerein stimulation at any of the tested concentrations. Neither did mezerein cause an increase in intracellular Ca2+, as monitored by Quin 2 fluorescence. Both phorbol esters and mezerein stimulated intact neutrophils to generate O2- and release lysosomal enzymes into the extracellular medium. Finally sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis demonstrated key differences in the patterns of endogenous phosphoproteins of neutrophils stimulated with phorbol as compared with mezerein. We therefore suggest that PKC activation may not be the only pathway required to elicit neutrophil responses.


2021 ◽  
Vol 5 (Supplement_S1) ◽  
pp. S46-S50
Author(s):  
Micah S Most ◽  
Pablo C Grijalva ◽  
Haley N Beer ◽  
Rachel L Gibbs ◽  
Zena M Hicks ◽  
...  

2018 ◽  
Vol 19 (9) ◽  
pp. 2702 ◽  
Author(s):  
Lili Zhuang ◽  
Wei Cao ◽  
Jian Wang ◽  
Jingjin Yu ◽  
Zhimin Yang ◽  
...  

Heat transcription factors (Hsfs) belong to a large gene family classified into A, B, and C groups, with classes A and B Hsfs being well-characterized and known for their roles in plant tolerance to abiotic stresses. The functions and roles of Class C Hsfs are not well-documented. The objectives of this study were to characterize a class C Hsf gene (FaHsfC1b) cloned from tall fescue (Festuca arundinacea), a perennial grass species, and to determine the physiological functions of FaHsfC1b in regulating heat tolerance by overexpressing FaHsfC1b in Arabidopsis thaliana. Full length cDNA of FaHsfC1b was cloned and the sequence alignment showed that it had high similarity to OsHsfC1b with typical DNA binding domain, hydrophobic oligomerization domain, and a nucleus localization signal. Transient expression with FaHsfC1b-eGFP in protoplasts of Arabidopsis leaves indicated its nucleus localization. qRT-PCR analysis showed that FaHsfC1b responded to heat, osmotic, salt, and cold stress in leaves and roots during 48-h treatment. Physiological analysis showed that FaHsfC1b overexpression enhanced plant survival rate, chlorophyll content, and photochemical efficiency, while it resulted in decreases in electrolyte leakage, H2O2 and O2− content under heat stress. qRT-PCR showed that endogenous HsfC1 was induced in transgenic plants and the expression levels of heat protection protein genes, including several HSPs, AtGalSyn1, AtRof1, and AtHSA32, as well as ABA-synthesizing gene (NCED3) were significantly upregulated in transgenic plants overexpressing FaHsfC1b under heat stress. Our results first demonstrate that HsfC1b plays positive roles in plant tolerance to heat stress in association with the induction and upregulation of heat-protective genes. HsfC1b may be used as a candidate gene for genetic modification of cool-season plant species for improving heat tolerance.


Sign in / Sign up

Export Citation Format

Share Document