scholarly journals The possibility of using bacteriophages in otolaryngology

2018 ◽  
pp. 24-28 ◽  
Author(s):  
E. S. Artemyeva ◽  
M. A. Budkovaya ◽  
S. V. Ryazantsev

The treatment of infectious diseases in the context of the steady increase in the number of microorganisms that are resistant to antibiotics is one of the most acute problems in otorhinolaryngology. This explains the raise interest in a fundamentally new rational treatment strategy of infections both in Russia and around the world - the use of bacteriophages. These drugs have proven efficacy against antibiotic-resistant strains of bacteria, do not cause toxic and allergic reactions, and have no contraindications to use.

Author(s):  
О.В. Шамова ◽  
М.С. Жаркова ◽  
П.М. Копейкин ◽  
Д.С. Орлов ◽  
Е.А. Корнева

Антимикробные пептиды (АМП) системы врожденного иммунитета - соединения, играющие важную роль в патогенезе инфекционных заболеваний, так как обладают свойством инактивировать широкий спектр патогенных бактерий, обеспечивая противомикробную защиту живых организмов. В настоящее время АМП рассматриваются как потенциальные соединения-корректоры инфекционной патологии, вызываемой антибиотикорезистентными бактериями (АБР). Цель данной работы состояла в изученим механизмов антибактериального действия трех пептидов, принадлежащих к семейству бактенецинов - ChBac3.4, ChBac5 и mini-ChBac7.5Nb. Эти химически синтезированные пептиды являются аналогами природных пролин-богатых АМП, обнаруженных в лейкоцитах домашней козы Capra hircus и проявляющих высокую антимикробную активность, в том числе и в отношении грамотрицательных АБР. Методы. Минимальные ингибирующие и минимальные бактерицидные концентрации пептидов (МИК и МБК) определяли методом серийных разведений в жидкой питательной среде с последующим высевом на плотную питательную среду. Эффекты пептидов на проницаемость цитоплазматической мембраны бактерий для хромогенного маркера исследовали с использованием генетически модифицированного штамма Escherichia coli ML35p. Действие бактенецинов на метаболическую активность бактерий изучали с применением маркера резазурина. Результаты. Показано, что все исследованные пептиды проявляют высокую антимикробную активность в отношении Escherichia coli ML35p и антибиотикоустойчивых штаммов Escherichia coli ESBL и Acinetobacter baumannii in vitro, но их действие на бактериальные клетки разное. Использован комплекс методик, позволяющих наблюдать в режиме реального времени динамику действия бактенецинов в различных концентрациях (включая их МИК и МБК) на барьерную функцию цитоплазматической мембраны и на интенсивность метаболизма бактериальных клеток, что дало возможность выявить различия в характере воздействия бактенецинов, отличающихся по структуре молекулы, на исследуемые микроорганизмы. Установлено, что действие каждого из трех исследованных бактенецинов в бактерицидных концентрациях отличается по эффективности нарушения целостности бактериальных мембран и в скорости подавления метаболизма клеток. Заключение. Полученная информация дополнит существующие фундаментальные представления о механизмах действия пролин-богатых пептидов врожденного иммунитета, а также послужит основой для биотехнологических исследований, направленных на разработку на базе этих соединений новых антибиотических препаратов для коррекции инфекционных заболеваний, вызываемых АБР и являющимися причинами тяжелых внутрибольничных инфекций. Antimicrobial peptides (AMPs) of the innate immunity are compounds that play an important role in pathogenesis of infectious diseases due to their ability to inactivate a broad array of pathogenic bacteria, thereby providing anti-microbial host defense. AMPs are currently considered promising compounds for treatment of infectious diseases caused by antibiotic-resistant bacteria. The aim of this study was to investigate molecular mechanisms of the antibacterial action of three peptides from the bactenecin family, ChBac3.4, ChBac5, and mini-ChBac7.5Nb. These chemically synthesized peptides are analogues of natural proline-rich AMPs previously discovered by the authors of the present study in leukocytes of the domestic goat, Capra hircus. These peptides exhibit a high antimicrobial activity, in particular, against antibiotic-resistant gram-negative bacteria. Methods. Minimum inhibitory and minimum bactericidal concentrations of the peptides (MIC and MBC) were determined using the broth microdilution assay followed by subculturing on agar plates. Effects of the AMPs on bacterial cytoplasmic membrane permeability for a chromogenic marker were explored using a genetically modified strain, Escherichia coli ML35p. The effect of bactenecins on bacterial metabolic activity was studied using a resazurin marker. Results. All the studied peptides showed a high in vitro antimicrobial activity against Escherichia coli ML35p and antibiotic-resistant strains, Escherichia coli ESBL and Acinetobacter baumannii, but differed in features of their action on bacterial cells. The used combination of techniques allowed the real-time monitoring of effects of bactenecin at different concentrations (including their MIC and MBC) on the cell membrane barrier function and metabolic activity of bacteria. The differences in effects of these three structurally different bactenecins on the studied microorganisms implied that these peptides at bactericidal concentrations differed in their capability for disintegrating bacterial cell membranes and rate of inhibiting bacterial metabolism. Conclusion. The obtained information will supplement the existing basic concepts on mechanisms involved in effects of proline-rich peptides of the innate immunity. This information will also stimulate biotechnological research aimed at development of new antibiotics for treatment of infectious diseases, such as severe in-hospital infections, caused by antibiotic-resistant strains.


Author(s):  
Alla Nikolaevna Kaira ◽  
Vyacheslav Fedorovich Lavrov ◽  
Oksana Anatolievna Svitich

Typhoid fever is still an urgent infection, especially in countries where the majority of the population lives below the poverty line, with limited resources, and without the ability to comply with basic hygiene rules. About 11 million cases of typhoid fever are registered worldwide every year, and about 400 people die from this infection every day. The global development of international relations activates migration processes, tourism, and provides rapid movement of significant masses of people around the world, which makes the risk of widespread typhoid infection quite real. In recent years, due to the emergence of antibiotic-resistant strains of S. typhi, treatment of typhoid fever has become less effective. Natural disasters in the form of earthquakes and floods, man-made disasters, as well as military conflicts that occur in different parts of the world, are fertile «soil» for the emergence and spread of typhoid infection, which actualizes the implementation of appropriate prevention measures, including immunoprophylaxis of the disease. Despite the obvious success in the fight against typhoid fever, which consists in a significant reduction in cases of typhoid infection in the world, this dangerous infectious disease still remains an urgent problem, both for health authorities and the population of many countries. Children and young people are still ill, and there is a real risk of infection spreading to any country. Natural disasters pose a real threat of typhoid outbreaks and epidemics. Mass appearance of antibiotic-resistant strains of S. typhi significantly complicates the treatment of patients, dictates the need for constant monitoring of the pathogen’s resistance to antibiotics and the introduction of typhoid immunoprophylaxis for epidemic indications among professional risk groups, labor migrants, and tourists traveling to countries with typhoid-affected countries. There is also a need for reliable epidemiological surveillance of this infection, carried out on an ongoing basis.


Author(s):  
M.V. Shchetkina ◽  
◽  
K.A. Sidelnikova ◽  

Recent years have changed the concept of sexually transmitted infections. This situation is due to the development of international tourism, a change in the age structure of the population, a changing attitude towards sex, the emergence of antibiotic-resistant strains of pathogens. The significant spread of sexually transmitted infections in all regions of the world is a matter of concern not only for venereologists, but also for sociologists. All sexually transmitted infections have different symptoms, modes of infection and pose a serious threat to health. The article examines the factors that influenced the rapid growth and spread of sexually transmitted infections, the classification of the diseases under consideration is given. In addition to the main routes of transmission, other routes by which only a few sexually transmitted infections (in particular, HIV, cytomegalovirus, etc.) can be transmitted are considered in detail. The authors proposed the prevention of sexually transmitted infections, including a set of health measures aimed at preventing infection with sexually transmitted diseases.


Author(s):  
Seda Ozdikmenli ◽  
Nukhet Nilüfer Zorba

Diseases caused by Staphylococcus aureus are widespread through the world in spite of developing technology. S. aureus is an important pathogen causing food intoxications besides hospital infections by its antibiotic resistant strains. Nowadays, there has been worldwide increasing concern on usage of natural products to control microorganisms. One of these natural products is essential oils. They are produced from plants especially from spices and composed of many components and volatiles. This review summarizes informative literature on essential oils and their mode of antimicrobial action. In addition, current knowledge on in vitro researches on antibacterial activity of essential oils and food applications to control S. aureus has been discussed.


2018 ◽  
Vol 20 (83) ◽  
pp. 381-384
Author(s):  
D.O. Kisil ◽  
T.I. Fotina

In most countries of the world, infectious diseases of bees are an important problem for beekeeping, as they lead to a decrease and decrease in the number of bee colonies, a negative impact on the environment, a decrease in the yield of entomophilic crops and the overall productivity of the industry as a whole. According to data from statistical reporting and scientific publications, American and European flocks, ascospheros are registered in apiaries almost all over the world: in Western and Eastern Europe, North and Central America, Canada, Australia and New Zealand, Africa, in the CIS countries. The change in the epizootic situation in bee-keeping is associated with the widespread spread of the varioise invasion, which causes a steady increase in the incidence of bee infestation by infectious diseases, so the effect of this invasion on the intensity of the epizootic process requires constant monitoring research. Among the topical tasks of the veterinary support of the beekeeping industry in the improvement of the system of antiepizootic measures, the differential diagnosis of infectious diseases of the breeding pedigree in the mixed forms of their manifestation was very important. The difficulty in making the correct diagnosis in mixed forms of the course of infectious diseases leads to inadequate and untimely conduct of treatment and preventive measures, and as a consequence, to the weakening and death of bees. In this regard, the development of an epizootiological monitoring system aimed at recording and evaluating changes in the epizootic state of apiaries, the identification of sources and reservoirs of pathogens, the motive forces of the epizootic process and the forms of the disease, and the organization of a system of effective preventive, medical and veterinary-sanitary measures on the apiaries. In the period of economic transformations in the agrarian-industrial complex there was a lack of breeding of beekeeping farms and apiaries, a system of management of the industry and a form of ownership changed, all this created a qualitatively new environment of the bee colony and contributed to the evolution of the epizootic process in infectious diseases – the development of mixed infections. In connection with this, there was a need to improve the system of epidemiological surveillance in beekeepers and to introduce a more effective comprehensive system of measures for the prevention and control of infectious diseases of the breeding bee, in particular, American rot, varrosis and other contagious diseases of bees.


Author(s):  
NА Gordinskaya ◽  
EV Boriskina ◽  
DV Kryazhev

Introduction: A large number of infectious processes are associated with opportunistic microorganisms. The phenotype of antibiotic resistance of such pathogens is multidrug-resistant strains with the presence of various β-lactamases. Our objective was to determine the phenotypic and genotypic features of antibiotic resistance of staphylococci, enterobacteria, and non-fermenting Gram-negative bacteria – the cause of infectious diseases in patients of various health facilities of Nizhny Novgorod. Material and methods: Using classical microbiological methods and molecular genetic studies, we analyzed 486 strains of microorganisms isolated from the upper respiratory tract, intestines, urine, and wound discharge of patients in 2019–2020. In all isolates, the phenotype of antibiotic resistance was determined by the disco-diffusion method (Bioanalyse, Turkey) and using the Multiscan FC spectrophotometer (ThermoScientific, Finland) with Microlatest tablets (PLIVA-Lachema, Czech Republic), along with molecular features of resistance mechanisms by PCR on the CFX96 device (BioRad, USA) using AmpliSens kits (Russia). Results and discussion: The results showed that the most prevalent causative agents of infectious diseases (40.7 %) were Gram-negative bacteria, of which Enterobacteriaceae and non-fermenting bacteria accounted for 27.1 % and 13.6 % of cases, respectively. Staphylococci were isolated in 37.6 % of patients: S. aureus and coagulase-negative staphylococci induced 13.4 % and 24.2 % of cases, respectively. The analysis of antibiotic resistance of the isolates showed a high level of antimicrobial resistance in all hospitals, regardless of the isolation locus. The phenotype of methicillin-resistant strains was found in 26.3 % and 37.9 % of S. aureus and coagulase-negative staphylococci, respectively; the mecA gene was found in 89.0 % of methicillin-resistant staphylococci. The highest number of antibiotic-resistant strains among Gram-negative microorganisms was observed in K. pneumoniae, A. baumannii, and P. aeruginosa. We established that 61.7 % of K. pneumoniae, 75.1 % of A. baumannii, and 58.2 % of P. aeruginosa were resistant to carbapenems. The results of molecular genetic studies confirmed the presence of serine carbapenemases KPC and OXA groups in all multidrug-resistant K. pneumoniae and A. baumannii; genes of the metallo-β-lactamase of VIM group were found in 40.9 % strains of P. aeruginosa. The production of numerous β-lactamases and the presence of determinants of antibiotic resistance in the genome determine the virulent properties of opportunistic microorganisms. Conclusion: The antibiotic resistance of opportunistic microorganisms is the cause of developing a chronic infectious process. Today, a wide spread of antibiotic-resistant infectious agents is a serious public health problem, which determines the need for constant microbiological monitoring and studies of molecular mechanisms of resistance to identify the most potent antibiotics and to determine the ways of eradication of multidrug-resistant strains.


2021 ◽  
Vol 32 (1) ◽  
pp. 67-70
Author(s):  
T. Yu. Matylonok ◽  
O. Ye. Pakhomov ◽  
N. M. Polishchuck

Bacterial resistance to antibiotics is one of the three major health challenges of the 21st century. One of the most important reasons for the acquisition and spread of antibiotic resistance in the environment is the irrational and uncontrolled use of antibacterial drugs, not only for medical but also other purposes, and their improper disposal. The microbiome of aquatic and soil ecosystems is characterized by the acquisition of antibiotic resistance through mobile genetic elements, contact with antibacterial drugs and their residues, the action of heavy metals and environmental stress. Also, according to the literature, it is noted that the resistance of microorganisms to antibacterial drugs in the environment existed much earlier than in clinical strains. These facts can not help but worry, because antibiotic-resistant strains of the environment have an extremely negative impact on human health. Once in the human body with water and food, they significantly complicate and / or make it impossible to further treat life-threatening diseases. Also, antibacterial residues circulating in aquatic and soil ecosystems, entering the human body can cause cancer, allergic reactions or disruption of the natural intestinal microflora. These ecosystems are characterized by large-scale spread of antibiotic-resistant microorganisms, antibacterial drugs and their residues. The aim of our work was to analyze with the help of theoretical methods of scientific research the reasons for the acquisition and spread of antibiotic resistance among environmental microbiota, namely in aquatic and soil ecosystems. To determine the impact of antibiotic-resistant bacteria of these ecosystems on human health. We have found that antibacterial drugs, antibiotic-resistant strains and resistance genes are a particular problem for wastewater treatment. Antibiotics can provide a selective load, as the mechanisms that break them down can promote resilience and selectively enrich. Wastewater treatment plants can be a favorable factor for the horizontal transfer of genes and the development of bacterial polyresistance, and high-resistance genes can be preserved even after disinfection. Soil is also an important reservoir for antibiotic-resistant bacteria and resistance genes. Microorganisms are in a constant struggle for existence in this ecosystem and try to colonize the micro-scale with the most favorable for their ecotype habitat. Antibiotic-resistant soil bacteria are in close contact with other members of the microbiota, which in turn promotes the horizontal transfer of resistance genes, even between cells of different species or genera through genetic determinants. Conclusion: ecosystems are characterized by large-scale spread of antibiotic-resistant microorganisms, antibacterial drugs and their residues. Therefore, this problem should be properly addressed, as the presence of antibiotic-resistant microorganisms, antibacterial drugs and their residues in the environment can cause unpredictable environmental consequences and adversely affect human health with more severe incurable infectious diseases. Monitoring programs for antibiotic-resistant microorganisms and resistance genes in soil and aquatic ecosystems are necessary and very relevant today. After all, this microbiota poses a serious threat to both the environment and human health and can easily spread from one part of the world around the world.


2020 ◽  
Vol 18 (6) ◽  
pp. 34-38
Author(s):  
Yu. E. Skurikhina ◽  
V. B. Turkutyukov

Relevance. The increase in the frequency of infections caused by Pseudomonas aeruginosa and Acinetobacter baumannii, which have a high level of resistance to many groups of antibiotics, requires a comprehensive study, including modern research methods.Aims. The study of regional features of the dynamics of the formation and circulation of antibiotic-resistant strains A. baumannii and P. aeruginosa.Materials and methods. During 2009-2018 we analyzed the data of microbiological laboratories of multidisciplinary hospitals and carried out a molecular genetic study of the determinants of antibiotic resistance by PCR of A. baumannii and P. aeruginosa strains isolated from clinical material in order to determine the level of variability of resistance.Results. The study revealed a tendency to increase in the proportion of strains A. baumannii and P. aeruginosa in the etiological structure of healh-care associated infections and purulent-septic infections; high incidence of strains resistant to cephalosporins, carbapenems, beta-lactams and multi-resistant strains. The appearance and distribution of the determinants of antibiotic resistance NDM-1 and MCR-1 in these bacteria were also detected.Conclusions. Over the past decade, a steady increase in the proportion of A. baumannii and P. Aeruginosa resistant to many antibiotics in patients in intensive care unit and surgery departments in hospitals of Vladivostok (Primorsky reg., Russia), and the emergence of new antimicrobial resistance mechanisms in these microorganisms.


2013 ◽  
Vol 62 (3) ◽  
pp. 40-43
Author(s):  
Marina Anatolyevna Kucherenko

The provision of clear guidelines on the application of antibacterial drugs in pregnancy leads to a significant reduction of the risk of infection of mother and fetus, of the development of toxic and allergic reactions, as well as to the containment of the formation and spread of antibiotic resistant strains of microorganisms.


1997 ◽  
Vol 2 (3) ◽  
pp. 19-20 ◽  
Author(s):  
A Brisabois ◽  
I Cazin ◽  
J Breuil ◽  
E Collatz

The World Health Organisation has recently pointed out an alarming increase in the incidence of antibiotic resistant strains of Salmonella, which are due to the use of antibiotics in intensive breeding. In France, until recent years, no or few cases of a


Sign in / Sign up

Export Citation Format

Share Document