Analyzing the potential impacts of climate change on rainfed wheat production in Hamedan Province, Iran, via generalized additive models

2015 ◽  
Vol 7 (1) ◽  
pp. 212-223 ◽  
Author(s):  
Hassan Mohammadian Mosammam ◽  
Ali M. Mosammam ◽  
Mozaffar Sarrafi ◽  
Jamileh Tavakoli Nia ◽  
Hassan Esmaeilzadeh

Climate change is one of the greatest challenges in the 21st century and the agriculture sector is very vulnerable to this phenomenon. Since wheat is the most important cereal crop in Iran, we aim to analyze the potential impact of climatic variables (temperature and precipitation) on rainfed wheat productivity in Hamedan Province, Iran. For this purpose, generalized additive models have been used to model yields of rainfed wheat based on climatic variables during 2004–2012. Then, based on sensitivity of rainfed wheat to temperature and precipitation in this period, we predict the potential effects of climate change on rainfed wheat yield under the IPCC SRES A1FI and B1 climate change scenarios. Results suggest that yields of rainfed wheat would decrease in all Hamedan's counties primarily because of decreasing October to June precipitation and higher temperature. As a result, it is predicted that the yield of rainfed wheat in Hamedan under the A1F1 and B1 scenarios will fall by 41.3% and 20.6%, respectively, in the 2080s. In other words, according to the A1F1 scenario, in the 2080s, Hamedan Province's rainfed wheat production will decline from 1090 kg/ha to 639 kg/ha and under the B1 scenario to 865 kg/ha.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 532 ◽  
Author(s):  
Jisoo Yu ◽  
Tae-Woong Kim ◽  
Dong-Hyeok Park

As the environment changes, the stationarity assumption in hydrological analysis has become questionable. If nonstationarity of an observed time series is not fully considered when handling climate change scenarios, the outcomes of statistical analyses would be invalid in practice. This study established bivariate time-varying copula models for risk analysis based on the generalized additive models in location, scale, and shape (GAMLSS) theory to develop the nonstationary joint drought management index (JDMI). Two kinds of daily streamflow data from the Soyang River basin were used; one is that observed during 1976–2005, and the other is that simulated for the period 2011–2099 from 26 climate change scenarios. The JDMI quantified the multi-index of reliability and vulnerability of hydrological drought, both of which cause damage to the hydrosystem. Hydrological drought was defined as the low-flow events that occur when streamflow is equal to or less than Q80 calculated from observed data, allowing future drought risk to be assessed and compared with the past. Then, reliability and vulnerability were estimated based on the duration and magnitude of the events, respectively. As a result, the JDMI provided the expected duration and magnitude quantities of drought or water deficit.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 168
Author(s):  
Xueqin Liu ◽  
Hui Wang ◽  
Dahan He ◽  
Xinpu Wang ◽  
Ming Bai

Beetles are key insect species in global biodiversity and play a significant role in steppe ecosystems. In the temperate steppe of China, the increasing degeneration of the grasslands threatens beetle species and their habitat. Using Generalized Additive Models (GAMs), we aimed to predict and map beetle richness patterns within the temperate steppe of Ningxia (China). We tested 19 environmental predictors including climate, topography, soil moisture and space as well as vegetation. Climatic variables (temperature, precipitation, soil temperature) consistently appeared among the most important predictors for beetle groups modeled. GAM generated predictive cartography for the study area. Our models explained a significant percentage of the variation in carabid beetle richness (79.8%), carabid beetle richness distribution seems to be mainly influenced by temperature and precipitation. The results have important implications for management and conservation strategies and also provides evidence for assessing and making predictions of beetle diversity across the steppe.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 119
Author(s):  
Antonio Fidel Santos-Hernández ◽  
Alejandro Ismael Monterroso-Rivas ◽  
Diódoro Granados-Sánchez ◽  
Antonio Villanueva-Morales ◽  
Malinali Santacruz-Carrillo

The tropical rainforest is one of the lushest and most important plant communities in Mexico’s tropical regions, yet its potential distribution has not been studied in current and future climate conditions. The aim of this paper was to propose priority areas for conservation based on ecological niche and species distribution modeling of 22 species with the greatest ecological importance at the climax stage. Geographic records were correlated with bioclimatic temperature and precipitation variables using Maxent and Kuenm software for each species. The best Maxent models were chosen based on statistical significance, complexity and predictive power, and current potential distributions were obtained from these models. Future potential distributions were projected with two climate change scenarios: HADGEM2_ES and GFDL_CM3 models and RCP 8.5 W/m2 by 2075–2099. All potential distributions for each scenario were then assembled for further analysis. We found that 14 tropical rainforest species have the potential for distribution in 97.4% of the landscape currently occupied by climax vegetation (0.6% of the country). Both climate change scenarios showed a 3.5% reduction in their potential distribution and possible displacement to higher elevation regions. Areas are proposed for tropical rainforest conservation where suitable bioclimatic conditions are expected to prevail.


2012 ◽  
Vol 92 (3) ◽  
pp. 421-425 ◽  
Author(s):  
Hong Wang ◽  
Yong He ◽  
Budong Qian ◽  
Brian McConkey ◽  
Herb Cutforth ◽  
...  

Wang, H., He, Y., Qian, B., McConkey, B., Cutforth, H., McCaig, T., McLeod, G., Zentner, R., DePauw, R., Lemke, R., Brandt, K., Liu, T., Qin, X., White, J., Hunt, T. and Hoogenboom, G. 2012. Short Communication: Climate change and biofuel wheat: A case study of southern Saskatchewan. Can. J. Plant Sci. 92: 421–425. This study assessed potential impacts of climate change on wheat production as a biofuel crop in southern Saskatchewan, Canada. The Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) was used to simulate biomass and grain yield under three climate change scenarios (CGCM3 with the forcing scenarios of IPCC SRES A1B, A2 and B1) in the 2050s. Synthetic 300-yr weather data were generated by the AAFC stochastic weather generator for the baseline period (1961–1990) and each scenario. Compared with the baseline, precipitation is projected to increase in every month under all three scenarios except in July and August and in June for A2, when it is projected to decrease. Annual mean air temperature is projected to increase by 3.2, 3.6 and 2.7°C for A1B, A2 and B1, respectively. The model predicted increases in biomass by 28, 12 and 16% without the direct effect of CO2 and 74, 55 and 41% with combined effects (climate and CO2) for A1B, A2 and B1, respectively. Similar increases were found for grain yield. However, the occurrence of heat shock (>32°C) will increase during grain filling under the projected climate conditions and could cause severe yield reduction, which was not simulated by DSSAT-CSM. This implies that the future yield under climate scenarios might have been overestimated by DSSAT-CSM; therefore, model modification is required. Several measures, such as early seeding, must be taken to avoid heat damages and take the advantage of projected increases in temperature and precipitation in the early season.


2021 ◽  
Vol 7 (11) ◽  
pp. 912
Author(s):  
Rodolfo Bizarria ◽  
Pepijn W. Kooij ◽  
Andre Rodrigues

Maintaining symbiosis homeostasis is essential for mutualistic partners. Leaf-cutting ants evolved a long-term symbiotic mutualism with fungal cultivars for nourishment while using vertical asexual transmission across generations. Despite the ants’ efforts to suppress fungal sexual reproduction, scattered occurrences of cultivar basidiomes have been reported. Here, we review the literature for basidiome occurrences and associated climate data. We hypothesized that more basidiome events could be expected in scenarios with an increase in temperature and precipitation. Our field observations and climate data analyses indeed suggest that Acromyrmex coronatus colonies are prone to basidiome occurrences in warmer and wetter seasons. Even though our study partly depended on historical records, occurrences have increased, correlating with climate change. A nest architecture with low (or even the lack of) insulation might be the cause of this phenomenon. The nature of basidiome occurrences in the A. coronatus–fungus mutualism can be useful to elucidate how resilient mutualistic symbioses are in light of climate change scenarios.


<em>Abstract</em>.-Climate change can have an effect on species distributions. The 1900 distribution and potential future distribution of diadromous fish in Europe, North Africa, and the Middle East were explored using generalized additive models (GAMs) and selected habitat characteristics of 196 basins. Robust presence-absence models were built for 20 of the 28 diadromous species in the study area using longitude, annual temperature, drainage surface area, annual precipitation, and source elevation as explanatory variables. Inspection of the relationship between each variable and species presence-absence revealed that the GAMs were generally interpretable and plausible. Given the predicted rise in annual temperature in climate models ranging between 1°C and 7°C by 2100, the fish species were classified according to those losing suitable basins, those gaining suitable basins, and those showing little or no change. It was found that the climate envelopes based on temperature and precipitation for diadromous species would, in general, be shifted farther northeastwards by 2100, and these shifting ranges were comparable with those assessed in other studies. The uncertain future of some species was highlighted, and it was concluded that conservation policy and management plans will need to be revised in the face of climate change.


Climate ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 139
Author(s):  
Manashi Paul ◽  
Sijal Dangol ◽  
Vitaly Kholodovsky ◽  
Amy R. Sapkota ◽  
Masoud Negahban-Azar ◽  
...  

Crop yield depends on multiple factors, including climate conditions, soil characteristics, and available water. The objective of this study was to evaluate the impact of projected temperature and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate projections, four global climate models (GCMs) and three representative concentration pathways (RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and late century in this region. To evaluate future management strategies, water budget and crop yields were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would improve corn yields during mid-century across all scenarios. However, prolonged irrigation would have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil moisture, temperature, and precipitation as well as the water management practice used (i.e., rainfed or irrigated). The computed values from the SWAT modeling can be used as guidelines for water resource managers in this watershed to plan for projected water shortages and manage crop yields based on projected climate change conditions.


2016 ◽  
Vol 13 (22) ◽  
pp. 6229-6245 ◽  
Author(s):  
Henk-Jan van der Kolk ◽  
Monique M. P. D. Heijmans ◽  
Jacobus van Huissteden ◽  
Jeroen W. M. Pullens ◽  
Frank Berendse

Abstract. Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation simulations suggest that a wetter tundra can be responsible for local shrub decline instead of shrub expansion.


2008 ◽  
Vol 12 (2) ◽  
pp. 449-463 ◽  
Author(s):  
M. Posch ◽  
J. Aherne ◽  
M. Forsius ◽  
S. Fronzek ◽  
N. Veijalainen

Abstract. The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC) was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically) feasible reductions (MFR). Future climate (temperature and precipitation) was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2). The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change) and B2 results from HadAM3 (lowest predicted change). Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation) on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. However, two exploratory empirical DOC models indicated that changes in sulphur deposition or temperature could have a confounding influence on the recovery of surface waters from acidification, and that the corresponding increases in DOC concentrations may offset the recovery in pH due to reductions in acidifying depositions.


Sign in / Sign up

Export Citation Format

Share Document