scholarly journals Improving economic water productivity to enhance resilience in canal irrigation systems: a pilot study of the Sina irrigation system in Maharashtra, India

Water Policy ◽  
2021 ◽  
Author(s):  
Upali A. Amarasinghe ◽  
Alok Sikka ◽  
Vidya Mandave ◽  
R. K. Panda ◽  
Sunil Gorantiwar ◽  
...  

Abstract This paper proposes scenarios to achieve more crop per drop and irrigation for all in water-scarce irrigation systems, with a particular reference to India. It uses economic water productivity (EWP) and water cost curve for EWP as tools to reallocate irrigation consumptive water use (CWU) and identify economically viable cropping patterns. Assessed in the water-scarce Sina irrigation system in Maharashtra, India, the method shows that drought-tolerant annual crops such as fruits and/or fodder should be the preferred option in irrigated cropping patterns. Cropping patterns with orchard or fodder as permanent fixtures will provide sustainable income in low rainfall years. Orchards in combination with other crops will increase EWP and value of output in moderate to good rainfall years. Governments should create an enabling environment for conjunctive water use and allocation of CWU to achieve a gradual shift to high-value annual/perennial crops as permanent fixtures in cropping patterns.

Water Policy ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 886-907 ◽  
Author(s):  
Brian D. Richter ◽  
James D. Brown ◽  
Rachel DiBenedetto ◽  
Adrianna Gorsky ◽  
Emily Keenan ◽  
...  

As water scarcity worsens globally, there is growing interest in finding ways to reduce water consumption, and for reallocating water savings to other uses including environmental restoration. Because irrigated agriculture is responsible for more than 90% of all consumptive water use in water-scarce regions, much attention is being focused on opportunities to save water on irrigated farms. At the same time, many recent journal articles have expressed concern that claims of water-saving potential in irrigation systems lack technical credibility, or are at least exaggerated, due to failures to properly account for key elements of water budgets such as return flows. Critics have also asserted that opportunities for reallocating irrigation savings to other uses are limited because any freed-up water is taken up by other farmers. A comprehensive literature and internet survey was undertaken to identify well-documented studies of water-saving strategies in irrigated agriculture, as well as a review of case studies in which water savings have been successfully transferred to other uses. Our findings suggest that there is in fact considerable potential to reduce consumptive water use in irrigation systems when proper consideration is given to water budget accounting, and those savings can be beneficially reallocated to other purposes.


2017 ◽  
Vol 32 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Sharad J. Kadbhane ◽  
Vivek L. Manekar

Abstract Table grape (Vitis vinifera cultivars) is a major cash crop in the Nashik district of India, which requires irrigation water throughout the year as per demand instantly. Canal irrigation is the adopted irrigation systems in the study area, but canal irrigation has got several serious disadvantages, such as mismatching rotation schedules and crop water demands, water allotment system and restrictions on the use of efficient irrigation methods. The storing the canal water in the farm pond instead of directly applying to the field using the free flooding method is alternate solution to overcome the disadvantages of the canal irrigation system. Once the canal water storing in the pond, it increases the possibilities to use the advance irrigation system like drip, subsurface, sprinkler etc. to enhance water use efficiency. The comparative study between the canal water directly applying for the field and canal water storing in the farm pond then use for irrigation, executed through the field experiments carried out on the grape orchard during a period April 2013 to March 2016. Results have been evaluated based on grape yield, water-productivity, berry size, and biomass. Water productivity (kg·m-3) with respect to water delivery to crop through the pond irrigation method was found 37% higher than the canal irrigation method during the study period. Based on the results, this study recommended the use of the farm pond to store the canal water and use it as per crop demand using advance irrigation systems.


Water Policy ◽  
2020 ◽  
Author(s):  
Upali A. Amarasinghe ◽  
Alok Sikka ◽  
Vidya Mandave ◽  
R. K. Panda ◽  
Sunil Gorantiwar ◽  
...  

Abstract The general perception of canal irrigation systems in India is one of built infrastructure with low service performance. This paper presents an analytical framework, applied to the Sina medium irrigation system in Maharashtra state of India, to study the performance of an expanded water influence zone (WIZ) including a buffer zone outside the canal command area (CCA) influenced by the irrigation system's water resources. The framework used satellite-based estimates of land-use and cropping patterns. The results indicate that there is hardly any gap between the irrigation potential created (IPC) and the irrigation potential utilized (IPU) in the CCA. The fraction of consumptive water use (CWU) of irrigation is low in the CCA, but almost one in the WIZ, due to the reuse of return flows in the WIZ. Future investments should focus on increasing economic water productivity ($/m3) in order to enhance the resilience of the farming community in the WIZ, which is frequently affected by water scarcity.


2020 ◽  
Vol 6 (2) ◽  
pp. 50-58
Author(s):  
Matluba Muxammadiyeva ◽  
◽  
Iftixor Ergashev

If we look at the existing irrigation methods used today in the country, then they are divided into: ground, rainfall, underground or underground, drip and spray. Basically, they are transferred to the irrigation field in two forms: through gravity and pressure irrigation systems. Naturally, a gravity irrigation system is economically more expensive than a low pressure irrigation system. However, from a performance appraisal stand point, pressure irrigation methods are less efficient and have serious disadvantages


2021 ◽  
Author(s):  
Amali A. Amali ◽  
Muhammad Khalifa ◽  
Lars Ribbe

<p>Water Productivity (WP), a pointer to crop performance vis-à-vis consumptive water use, has fevered debates around agricultural water use, away from scheme-based efficiency to field-scale productive value of water, that can be optimised in localities of increasing absolute and relative scarcity. Research on WP sprung from such debates to become a growth industry, that measures irrigation inefficiencies, poised towards developing economies and “low” value uses of water, to justify its reallocation across sectors, sometimes away from agriculture. While water allocation decisions increasingly prioritise sectoral productivity of freshwater resources, burgeoning food security measures to water scarcity adaptation is shifting management decisions from the purview of scheme managers to individual farming units, underscoring the need to parallel WP initiatives with the resilience of local livelihoods. In this study, we analyse the potential contribution of WP as an agricultural extensification mechanism for a water-scarce irrigated region. The Surface Energy Balance Algorithm for Land (SEBAL), is used to estimate evapotranspiration as a proxy for irrigated water consumption. An automated derivative, the pySEBAL model, is used to compute crop biomass combined with satellite-based evapotranspiration to estimate WP across 1680 heterogeneous groundwater irrigated fields in the eastern Azraq basin of Jordan. WP gap was hereafter estimated as the difference between the current field WP, to a selected productivity range, attainable within infrastructural and agroclimatic limits. By investigating the possibility of closing WP gaps, we show that a careful selection of WP thresholds to benchmark localised irrigated water consumption offers the potential to reduce seasonal irrigation water use within a range of 18 to 29% of the current consumption, without adversely affecting crop yield and related livelihoods. Such range (5 – 9 MCM[†]) for a water-scarce Azraq basin, offers substantial relief to groundwater resources, related ecosystems, and long-term catchment sustainability. We additionally demonstrate that this provides a window for agricultural extensification by leveraging farm management practices across irrigated fields. We finally propose entrepreneurial and capacity building opportunities from analysing dynamics in farmers' individual water use behaviour. WP, as a useful indicator for water reallocation under water-scarce conditions, would need to consider equitable utilisation of water resources and the resilience of local livelihoods.</p><div><br><div> <p>[†] Million Cubic Meters</p> </div> </div>


2004 ◽  
Vol 44 (2) ◽  
pp. 131 ◽  
Author(s):  
C. J. Linehan ◽  
D. P. Armstrong ◽  
P. T. Doyle ◽  
F. Johnson

Water use efficiency (WUE) in irrigated dairy systems has been defined, in this paper, as the amount of milk (kg milk fat plus protein) produced from pasture per megalitre of water (irrigation plus effective rainfall). A�farm survey was conducted for the 1997–98 and 1998–99 seasons in the Goulburn Irrigation System (GIS) and Murray Irrigation System (MIS) when the irrigation water allocated to irrigators in the GIS was low (100–120% of water right compared with the MIS which was 130 and 200% of water right). These data were analysed in conjunction with information collected on the same farms in the 1994–95 and 1995–96 seasons when the irrigation water allocated to irrigators in both systems was above 150% of water right (Armstrong et al. 1998, 2000). The aim of the survey was to determine if the management decisions made by dairy farmers in seasons of low irrigation water allocations had an impact on WUE.Milk production averaged across the 2 irrigation systems increased significantly over the 5-year period (57 540–75 040 kg milk fat + protein per farm). Over the same period the amount of irrigation water applied (GIS�7.6 ML/ha, MIS 9.2 ML/ha) and the milking area (GIS 72 ha, MIS 73 ha) remained constant. The amount of concentrates fed per cow (GIS 650–1100 kg DM, MIS 480–860 kg DM) and per farm (GIS 119–228 t DM, MIS�72–157 t DM) increased, but pasture consumption (GIS 8.9–9.5 t DM/ha, MIS 9.1–9.7 t DM/ha) did not increase significantly over the survey period. Therefore, the increase in milk production appeared to come primarily from an increase in supplementary feeding rather than an increase in pasture consumption, resulting in no significant change in WUE in either system (GIS 66 kg milk fat + protein/ML, MIS 61 kg milk fat + protein/ML).The survey results indicate that despite varying water allocations in the 2 major irrigation systems in northern Victoria, milk production on farms in both systems increased while changes in WUE could not be detected by the methods used. This suggests tactical options to increase WUE in response to short-term changes in water allocation were either difficult to implement or not a priority in a business sense.


Author(s):  
Fatima Sadoon Mushab ◽  
Sabah Anwer Almasraf

Subsurface soil water retention (SWRT) is a recent technology for increasing the crop yield, water use efficiency and then the water productivity with less amount of applied water. The goal of this research was to evaluate the existing of SWRT with the influence of surface and subsurface trickle irrigation on economic water productivity of cucumber crop. Field study was carried out at the Hawr Rajab district of Baghdad governorate from October 1st, to December 31st, 2017. Three experimental treatments were used, treatment plot T1 using SWRT with subsurface trickle irrigation, plot T2 using SWRT with surface trickle irrigation, while plot T3 without using SWRT and using surface tickle irrigation system. The obtained results showed that the economic water productivity in plot T1 was greater than plots T2 and T3. The increasing value was about 65 % and 124 %, respectively. The benefit of the installing SWRT along with subsurface trickle irrigation in the crop root zone assisted to keep the water, nutrients and fertilizers during the root zone profile, improving the field water use efficiency and then the parameter of water productivity.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1265
Author(s):  
Maged Elsayed Ahmed Mohammed ◽  
Mohammed Refdan Alhajhoj ◽  
Hassan Muzzamil Ali-Dinar ◽  
Muhammad Munir

Water scarcity is a major constraint in arid and semi-arid regions. Crops that require less irrigation water and those, which are considered drought-tolerant such as date palm (Phoenix dactylifera L.), are dominant in these regions. Despite the tolerance of these crops, the development of technologies that ensure efficient use of irrigation water is imperative. Taking these issues into consideration, the study was conducted to investigate the impact of limited irrigation water using a new subsurface irrigation system (SSI) on gas exchange, chlorophyll content, water use efficiency, water productivity, fruit physicochemical characteristics, and yield of date palm (cv. Sheshi). The impact of the SSI system was compared with two surface irrigation systems, namely, surface drip irrigation (SDI) and surface bubbler irrigation (SBI). The field experiment was carried out during 2018 and 2019 at the Date Palm Research Center of Excellence, King Faisal University, Kingdom of Saudi Arabia. The annual crop evapotranspiration (ETc) was 2544 mm. The applied irrigation water was set at 50%, 75%, and 125% of ETc for SSI, SDI, and SBI, respectively, which were based on the higher crop water productivity recorded in an initial field study. The total annual volume of water applied for SSI, SDI, and SBI was 22.89, 34.34, and 57.24 m3 palm−1, respectively. The crop water productivity (CWP) at the SSI system was significantly higher, with a value of 1.15 kg m−3, compared to the SDI (0.51 kg m−3) and SBI systems (0.37 kg m−3). The photosynthetic water use efficiency (WUE) was 10.09, 9.96, and 9.56 μmol CO2 mmol−1 H2O for SSI, SBI, and SDI, respectively. The maximum chlorophyll content (62.4 SPAD) was observed in SBI, followed by SSI (58.9 SPAD) and SDI (56.9 SPAD). Similarly, net photosynthesis and the transpiration rate were significantly higher in SBI and lowest in SSI. However, the SSI system substantially increased palm yield and enhanced fruit quality. The new SSI system, through its positive impact on the efficiency of irrigation water use and enhancement on fruit yield and fruit quality of date palm, seems quite suitable for the irrigation of palm trees in arid and semi-arid regions.


Author(s):  
Tagelsir Mohamed Gasmelseid

The use of software agent systems and technologies to simulate water resources management scenarios and improve the engagement of stakeholders in policy making is gaining paramount importance. Such importance originates from two main concerns or change agents. Firstly, the context of water management is becoming highly complicated due to the intensity of connections with other systems, the diversity of stakeholders and the multiplicity (and sometime conflicting) objectives of decision partners. Moreover, the domain used for capitalizing on water management issues is becoming planetary (as it is the case of shared basins) rather than being local (watershed, watercourse, scheme, etc.). As a result, the concern is not limited to the optimization of the utility matrix of stakeholders but additional attention is required to incorporate many emerging issues such as the maintenance of financial sustainability, functional mainstreaming and improving engagement to promote reconciliation and change of water use behaviors. Secondly, the recent technological developments have improved the processing capacity of hardware, software functionalities and the accessibility of telecommunication platforms. Such developments have been reflected in the improvement of the capacities of decision makers to address complex problem domains. Software agents' technologies possess the qualities that make them useful for the provision of decision support in water management domains. As it is the case of irrigated agriculture, software agents' technology can be used for the design of farm surface irrigation systems, the improvement of irrigation systems management and the enhancement of the involvement of farmers in the processes of integrated water management. This paper is concerned with the use of agent based systems to facilitate the engagement of farmers in Al Ahsaa area in the management of water resources. The government of the Kingdom is adopting a demand management approach for the management of irrigation water by discouraging the cultivation of water-consuming crops such as wheat and dates. Improving the ability of farmers to analyze alternative cropping patterns significantly affects their water use behavior.


2021 ◽  
Author(s):  
Alejandro Galindo ◽  
Mireia Corell ◽  
María Jose Martín-Palomo ◽  
Teresa Carrillo ◽  
Ignacio Girón ◽  
...  

<p>The scarcity of natural resources around the world has obligated to consider the concept of sustainability in all human activities. Agriculture is not an exception, it is the activity where sustainability is more important, mainly in irrigated orchards. Sustainable water uses are commonly associated with a low water footprint. Water footprint works conclude that the main differences are in the water management at the orchard level. The olive orchard is located at an arid, water scarce location where irrigation water needs are very high and therefore the water footprint. However, an efficient, sustainable water use could be performed in these situations. The aim of this work is the design of an index (Hydrosustainable index, HydroSOS) to estimate the olive grower’s effort at orchard level for improving the sustainability of irrigated olive groves. HydroSOS marks a wide range of field activities link to irrigation management. All these are grouped into hydraulic and agronomic components. Each component has different levels and marks according to its relation to the increase in water sustainability. Irrigation scheduling components are the most valued in the index, though others such as water use efficiency, irrigation system, or soil management are also included.  Four different levels are considered in relation to the final mark. HydroSOS is designed as a dynamic index to improve the objectivity in the evaluation of grower’s effort in irrigation optimization. Two cases of study are presented in two superhigh density olive orchards. Although both orchards are very similar in applied water and climatic conditions, HydroSOS index separated in two very different classifications.</p>


Sign in / Sign up

Export Citation Format

Share Document