Combination of indicators for increasing irrigation sustainability. Definition of a Hydrosustainable Index.

Author(s):  
Alejandro Galindo ◽  
Mireia Corell ◽  
María Jose Martín-Palomo ◽  
Teresa Carrillo ◽  
Ignacio Girón ◽  
...  

<p>The scarcity of natural resources around the world has obligated to consider the concept of sustainability in all human activities. Agriculture is not an exception, it is the activity where sustainability is more important, mainly in irrigated orchards. Sustainable water uses are commonly associated with a low water footprint. Water footprint works conclude that the main differences are in the water management at the orchard level. The olive orchard is located at an arid, water scarce location where irrigation water needs are very high and therefore the water footprint. However, an efficient, sustainable water use could be performed in these situations. The aim of this work is the design of an index (Hydrosustainable index, HydroSOS) to estimate the olive grower’s effort at orchard level for improving the sustainability of irrigated olive groves. HydroSOS marks a wide range of field activities link to irrigation management. All these are grouped into hydraulic and agronomic components. Each component has different levels and marks according to its relation to the increase in water sustainability. Irrigation scheduling components are the most valued in the index, though others such as water use efficiency, irrigation system, or soil management are also included.  Four different levels are considered in relation to the final mark. HydroSOS is designed as a dynamic index to improve the objectivity in the evaluation of grower’s effort in irrigation optimization. Two cases of study are presented in two superhigh density olive orchards. Although both orchards are very similar in applied water and climatic conditions, HydroSOS index separated in two very different classifications.</p>

1993 ◽  
Vol 32 (2) ◽  
pp. 226-228
Author(s):  
Zakir Hussain

The book; under review provides a valuable account of the issues and factors in managing the irrigation system, and presents a lucid and thorough discussion on the performance of the irrigation bureaucracies. It comprises two parts: the first outlines the factors affecting irrigation performance under a wide range of topics in the first five chapters. In Chapter One, the authors have attempted to assess the performance of the irrigation bureaucracies, conceptualise irrigation management issues, and build an empirical base for analysis while drawing upon the experience of ten country cases in Asia, Africa, and Latin America. The Second Chapter focuses on the variations in the management structures identified and the types of irrigation systems; and it defines the variables of the management structures. The activities and objectives of irrigation management are discussed in Chapter Three. The objectives include: greater production and productivity of irrigation projects; improved water distribution; reduction in conflicts; greater resource mobilisation and a sustained system performance. The authors also highlight the performance criterion in this chapter. They identify about six contextual factors which affect the objectives and the performance of irrigation, which are discussed in detail in Chapter Four. In Chapter Five, some organisational variables, which would lead to improvements in irrigation, are examined.


2010 ◽  
Vol 14 (1) ◽  
pp. 119-128 ◽  
Author(s):  
F. Bulsink ◽  
A. Y. Hoekstra ◽  
M. J. Booij

Abstract. National water use accounts are generally limited to statistics on water withdrawals in the different sectors of economy. They are restricted to "blue water accounts" related to production, thus excluding (a) "green" and "grey water accounts", (b) accounts of internal and international virtual water flows and (c) water accounts related to consumption. This paper shows how national water-use accounts can be extended through an example for Indonesia. The study quantifies interprovincial virtual water flows related to trade in crop products and assesses the green, blue and grey water footprint related to the consumption of crop products per Indonesian province. The study shows that the average water footprint in Indonesia insofar related to consumption of crop products is 1131 m3/cap/yr, but provincial water footprints vary between 859 and 1895 m3/cap/yr. Java, the most water-scarce island, has a net virtual water import and the most significant external water footprint. This large external water footprint is relieving the water scarcity on this island. Trade will remain necessary to supply food to the most densely populated areas where water scarcity is highest (Java).


Author(s):  
Marcelo R. dos Santos ◽  
Sérgio L. R. Donato ◽  
Lilian L. Lourenço ◽  
Tânia S. Silva ◽  
Mauricio A. Coelho Filho

ABSTRACT This study aimed to analyze different irrigation strategies in two cultivars of the banana crop. The study was conducted in four production cycles of ‘Prata-Anã’ and ‘BRS Platina’ bananas. The applied irrigation depths (ID) were obtained by the model ID = K x LA x ETo, where K is an empirical transpiration constant of 0.20; 0.35; 0.50 and 0.65 for the strategies 1, 2, 3 and 4, respectively; LA is the leaf area of mother and daughter plants of ‘Prata-Anã’ and ETo is the reference evapotranspiration. The strategy 5 was obtained according to the crop evapotranspiration, ETc = ETo x Kc, where Kc is the crop coefficient. Drip irrigation system was used, with two laterals per plant row and emitters with flow rate of 8 L h-1, spaced at 0.50 m. It was found that ‘Prata-Anã’ is more efficient than ‘BRS Platina’ in terms of water use and the model for irrigation management, ID = 0.35 x LA x ETo, is recommended to optimize water use by ‘Prata-Anã’ and ‘BRS Platina’ bananas, with increase in water use efficiency and maintenance of yield. The same model, with K coefficient equal to 0.50, makes it possible to obtain yield and water use efficiency equal to those obtained with irrigation management based on the ETc.


Water Policy ◽  
2021 ◽  
Author(s):  
Upali A. Amarasinghe ◽  
Alok Sikka ◽  
Vidya Mandave ◽  
R. K. Panda ◽  
Sunil Gorantiwar ◽  
...  

Abstract This paper proposes scenarios to achieve more crop per drop and irrigation for all in water-scarce irrigation systems, with a particular reference to India. It uses economic water productivity (EWP) and water cost curve for EWP as tools to reallocate irrigation consumptive water use (CWU) and identify economically viable cropping patterns. Assessed in the water-scarce Sina irrigation system in Maharashtra, India, the method shows that drought-tolerant annual crops such as fruits and/or fodder should be the preferred option in irrigated cropping patterns. Cropping patterns with orchard or fodder as permanent fixtures will provide sustainable income in low rainfall years. Orchards in combination with other crops will increase EWP and value of output in moderate to good rainfall years. Governments should create an enabling environment for conjunctive water use and allocation of CWU to achieve a gradual shift to high-value annual/perennial crops as permanent fixtures in cropping patterns.


10.29007/qz1w ◽  
2018 ◽  
Author(s):  
Saul Arciniega ◽  
Jose A. Breña-Naranjo ◽  
Adrián Pedrozo-Acuña ◽  
Antonio Hernández-Espriú

Irrigation water use (IWU) or withdrawal is a key component for the water management of a region since it tends to exceed the crops consumptive water use, especially in water-stressed regions where groundwater is the main source of water. Nevertheless, temporal IWU information is missing in many irrigation areas. Remote sensing (RS) data is commonly used for crop water requirements estimations in areas with lack of data, however, IWU is more complex to approach since it also depends on water use efficiency, irrigation system type, irrigation scheduling, and water availability, among others. This work explores the use of remote sensing data (TRMM, MODIS) and land surface hydrological products (GLDAS 2 and MERRA 2) to obtain insights about the space-time annual IWU patterns across croplands located within Mexico’s northeast region. Reported IWU in three irrigation districts (Don Martín, Región Lagunera and Bajo Río Bravo) was used to obtain a functional model using satellite data derived. Results suggest strong relationship between reported IWU with soil moisture content from GLDAS and the maximum annual EVI from MODIS, where a potential regression shown statistical correlations of 0.83 and 0.77, respectively.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 988B-988
Author(s):  
Lincoln Zotarelli ◽  
Johannes Scholberg ◽  
Michael Dukes ◽  
Hannah Snyder ◽  
Eric Simonne ◽  
...  

On sandy soils, potential N contamination of groundwater resources associated with intensively managed vegetables may hamper the sustainability of these systems. The objective of this study was to evaluate the interaction between irrigation system design/scheduling and N fertilization rates on zucchini production and potential N leaching. Zucchini was planted during Fall 2005 using three N fertilizer rates (73, 145, 217 kg/ha) and four different irrigation approaches. Irrigation scheduling included surface-applied drip irrigation and fertigation: SUR1 (141 mm applied) and SUR2 (266 mm) using irrigation control system (QIC) that allowed time-based irrigation (up to five events per day) and a threshold setting of 13% and 15% volumetric water content (VWC), respectively; Subsurface drip irrigation (SDI) using a QIC setting of 10% VWC (116 mm) combined with surface applied fertigation; and a control treatment with irrigation applied once daily (424 mm). Leacheate volumes were measured by drainage lysimeters. Nitrate leaching increased with irrigation rate and N rate and measured values ranged from 4 to 42 kg N/ha. Use of SDI greatly reduced nitrate leaching compared to other treatments. SDI and SUR1 treatments had no effect on yields (29 Mg/ha). However, SDI had a 15% and 479% higher water use efficiency (WUE) compared to SUR1 and the fixed irrigation duration treatment. Application of N in excess of intermediate N-rate (standard recommendation) did not increase yield but yield was reduced at the lowest N-rate. It is concluded that combining sensor-based SDI with surface applied fertigation resulted similar or higher yields while it reduced both water use and potential N leaching because of improved nutrient retention in the active root zone.


HortScience ◽  
2020 ◽  
Vol 55 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Jeff B. Million ◽  
Thomas H. Yeager

Two experiments were conducted to determine if a leaching fraction (LF)-guided irrigation practice with fixed irrigation run times between LF tests (LF_FX) could be improved by making additional adjustments to irrigation run times based on real-time weather information, including rain, using an evapotranspiration-based irrigation scheduling program for container production (LF_ET). The effect of the two irrigation practices on plant growth and water use was tested at three target LF values (10%, 20%, and 40%). For both Viburnum odoratissimum (Expt. 1) and Podocarpus macrophyllus (Expt. 2) grown in 36-cm-diameter containers with spray-stake microirrigation, the change in plant size was unaffected by irrigation treatments. LF_ET reduced water use by 10% compared with LF_FX in Expt. 2 but had no effect (P < 0.05) on water use in Expt. 1. Decreasing the target LF from 40% to 20% reduced water use 28% in both experiments and this effect was similar for both irrigation practices. For the irrigation system and irrigation schedule used in these experiments, we concluded that an LF-guided irrigation schedule with a target LF of 10% resulted in plant growth similar to one with a target LF of 40% and that the addition of a real-time weather adjustment to irrigation run times provided little or no improvement in water conservation compared with a periodic adjustment based solely on LF testing.


Author(s):  
C. E. N. Savala ◽  
A. N. Wiredu ◽  
J. O. Okoth ◽  
S. Kyei-Boahen

Abstract Soybean yield within the Southern Africa falls below its potential despite similar climatic conditions across some agroecologies, replicable agronomic management practices and introduced improved varieties. Understanding physiological processes and water-use efficiency (WUE) of soybean offer information on bridging this yield gap. A field study was conducted in 2017 and 2018 seasons in two agroecologies (Angonia and Ruace) in Mozambique to evaluate the effects of Bradyrhizobium diazoefficiens strain USDA110 formerly known as Bradyrhizobium japonicum inoculant, nitrogen and phosphorus on nodulation, physiology and yield of non-promiscuous (Safari) and promiscuous (TGx 1740-2F) soybean varieties. Data on transpiration, photosynthesis, leaf area index, radiation interception and WUE from the beginning of flowering to maturity were collected. Transpiration rate varied considerably with interaction between locations, growth stages, varieties and treatments. At podding, phosphorus-treated soybean at Angonia transpired less (6.3 mmol/m2/s) than check plants (6.6 mmol/m2/s). Photosynthesis rate and WUE were distinct with variety, growth stages and inputs within agroecologies. For instance, in Angonia 2018 season, phosphorus fertilized TGx 1740-2F photosynthesized more at flowering (25.3 μmol/m2/s) while the lowest was phosphorus-treated Safari at podding with 17.2 μmol/m2/s. At the same site in 2017, inoculated soybean photosynthesized more at 22.8 μmol/m2/s leading to better WUE of 3.6 that corresponded to 2894 kg/ha yield. Overall, soybean WUE was higher when inoculated than N-treated, while P application yielded better. Results from this study will complement breeders’ effort in developing phosphorus efficient varieties suited for a wide range of changing climatical conditions.


2004 ◽  
Vol 359 (1450) ◽  
pp. 1465-1476 ◽  
Author(s):  
F. I. Woodward ◽  
M. R. Lomas ◽  
C. K. Kelly

Biomes are areas of vegetation that are characterized by the same life–form. Traditional definitions of biomes have also included either geographical or climatic descriptors. This approach describes a wide range of biomes that can be correlated with characteristic climatic conditions, or climatic envelopes. The application of remote sensing technology to the frequent observation of biomes has led to a move away from the often subjective definition of biomes to one that is objective. Carefully characterized observations of life–form, by satellite, have been used to reconsider biome classification and their climatic envelopes. Five major tree biomes can be recognized by satellites based on leaf longevity and morphology: needleleaf evergreen, broadleaf evergreen, needleleaf deciduous, broadleaf cold deciduous and broadleaf drought deciduous. Observations indicate that broadleaf drought deciduous vegetation grades substantially into broadleaf evergreen vegetation. The needleleaf deciduous biome occurs in the world's coldest climates, where summer drought and therefore a drought deciduous biome are absent. Traditional biome definitions are quite static, implying no change in their life–form composition with time, within their particular climatic envelopes. However, this is not the case where there has been global ingress of grasslands and croplands into forested vegetation. The global spread of grasses, a new super–biome, was probably initiated 30–45 Myr ago by an increase in global aridity, and was driven by the natural spread of the disturbances of fire and animal grazing. These disturbances have been further extended over the Holocene era by human activities that have increased the land areas available for domestic animal grazing and for growing crops. The current situation is that grasses now occur in most, if not all biomes, and in many areas they dominate and define the biome. Croplands are also increasing, defining a new and relatively recent component to the grassland super–biome. In the case of both grassland and croplands, various forms of disturbance, particularly frequent disturbance, lead to continued range extensions of the biomes.


Water SA ◽  
2018 ◽  
Vol 44 (4 October) ◽  
Author(s):  
JT Vahrmeijer ◽  
JG Annandale ◽  
JM Steyn ◽  
KL Bristow

High-value vegetable crops are typically grown under irrigation to reduce production risk. For water resource planning it is essential to be able to accurately estimate water use of irrigated crops under a wide range of climatic conditions. Crop water use models provide a means to make water use and yield estimates, but need crop- and even cultivar-specific parameters. There is generally a lack of crop-specific model parameters for some important commercially grown vegetable crops, especially parameters determined over both summer and winter seasons. The experimental site used in this study was on the Steenkoppies Aquifer, a catchment under stress and an important vegetable production area in South Africa. Crop-specific growth parameters and water use for 4 selected high-value vegetable crops (beetroot, cabbage, carrots and broccoli) were measured over multiple seasons (two summers and one winter). These were used to parameterise the Soil Water Balance (SWB) generic crop growth model for both summer and winter seasons. In seasons where the same cultivar was planted, a single set of model parameters could be used to successfully simulate crop growth and water use. Results show that the amount of irrigation water required is dependent on season and rainfall, with broccoli having the lowest (1.8–2.7 kg m−3) and beetroot the highest (12.2–23.4 kg m−3) water productivity (WPFM), defined as fresh mass of marketable product per unit water consumed. The root crops had a greater harvest index (HIDM) than cabbage and broccoli. The parameters obtained expand the current database of SWB crop growth parameters for vegetables and can be used in a wide range of mechanistic simulation models to improve water management at field and catchment levels.


Sign in / Sign up

Export Citation Format

Share Document