Tendencies and Overview on the Nutrient Recovery from Sewage Sludge in Germany

2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Alexander Weidelener ◽  
Demet Antakyalı ◽  
Jörg Krampe

The critics against the land use of sewage sludge in Germany lead the research institutions to investigate methods for nutrient recovery. Current research proved that the nutrients such as nitrogen or phosphorus can be recovered. Though, the costs still must be reduced to compete with the conventional production using fresh raw material. Recovery products are not listed in current legislations concerning fertiliser use, therefore the land use of the recovered products require some legislative replenishments. The paper portrays the current situation concerning the above discussions with an overview on the actual recovery technologies

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2697
Author(s):  
Gabriel Gerner ◽  
Luca Meyer ◽  
Rahel Wanner ◽  
Thomas Keller ◽  
Rolf Krebs

Phosphorus recovery from waste biomass is becoming increasingly important, given that phosphorus is an exhaustible non-renewable resource. For the recovery of plant nutrients and production of climate-neutral fuel from wet waste streams, hydrothermal carbonization (HTC) has been suggested as a promising technology. In this study, digested sewage sludge (DSS) was used as waste material for phosphorus and nitrogen recovery. HTC was conducted at 200 °C for 4 h, followed by phosphorus stripping (PS) or leaching (PL) at room temperature. The results showed that for PS and PL around 84% and 71% of phosphorus, as well as 53% and 54% of nitrogen, respectively, could be recovered in the liquid phase (process water and/or extract). Heavy metals were mainly transferred to the hydrochar and only <1 ppm of Cd and 21–43 ppm of Zn were found to be in the liquid phase of the acid treatments. According to the economic feasibility calculation, the HTC-treatment per dry ton DSS with an industrial-scale plant would cost around 608 USD. Between 349–406 kg of sulfuric acid are required per dry ton DSS to achieve a high yield in phosphorus recovery, which causes additional costs of 96–118 USD. Compared to current sewage sludge treatment costs in Switzerland, which range between 669 USD and 1173 USD, HTC can be an economically feasible process for DSS treatment and nutrient recovery.


2021 ◽  
Vol 11 (2) ◽  
pp. 579
Author(s):  
Max Schmid ◽  
Selina Hafner ◽  
Günter Scheffknecht

The conversion of biogenic residues to fuels and chemicals via gasification and synthesis processes is a promising pathway to replace fossil carbon. In this study, the focus is set on sewage sludge gasification for syngas production. Experiments were carried out in a 20 kW fuel input bubbling fluidized bed facility with steam and oxygen as gasification agent. In-situ produced sewage sludge ash was used as bed material. The sensitivity of the key operation parameters gasifier temperature, oxygen ratio, steam to carbon ratio, and the space velocity on the syngas composition (H2, CO, CO2, CH4, CxHy, H2S, COS, NH3, and tars) was determined. The results show that the produced syngas has high H2 and CO concentrations of up to 0.37 m3 m−3 and 0.18 m3 m−3, respectively, and is thus suitable for synthesis of fuels and chemicals. By adjusting the steam to carbon ratio, the syngas’ H2 to CO ratio can be purposely tailored by the water gas shift reaction for various synthesis products, e.g., synthetic natural gas (H2/CO = 3) or Fischer–Tropsch products (H2/CO = 2). Also, the composition and yields of fly ash and bed ash are presented. Through the gasification process, the cadmium and mercury contents of the bed ash were drastically reduced. The ash is suitable as secondary raw material for phosphorous or phosphate fertilizer production. Overall, a broad database was generated that can be used for process simulation and process design.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3363
Author(s):  
Jolanta Latosińska ◽  
Maria Żygadło ◽  
Przemysław Czapik

Wastewater treatment processes produce sewage sludge (SS), which, in line with environmental sustainability principles, can be a valuable source of matter in the production of lightweight expanded clay aggregate (LECA). The literature on the influence of SS content and sintering temperature on the properties of LECA is scarce. This paper aims to statistically evaluate the effects of SS content and sintering temperature on LECA physical properties. Total porosity, pore volume, and apparent density were determined with the use of a density analyzer. A helium pycnometer was utilized to determine the specific density. Closed porosity was calculated. The test results demonstrated a statistically significant influence of the SS content on the specific density and water absorption of LECA. The sintering temperature had a significant effect on the specific density, apparent density, total porosity, closed porosity, total volume of pores, and water absorption. It was proved that a broad range of the SS content is admissible in the raw material mass for the production of LECA.


2021 ◽  
Author(s):  
Sadaf Pourghorbani

This thesis is a supporting paper for a photographic exhibition that explores contemporary social and political issues in the country of Iran, through the depiction of a changing landscape. The work consists of photographs of the northern province of Gilan, Iran. As a critical body of work, the installation engages audiences to experience the changing environment and asks viewers to question the causes of the environmental changes in agricultural areas. A brief history of land use change in Iran during the White revolution is presented followed by a description of the current situation of farmlands in contemporary Iran. Goals for the project, methodology and issues of subjectivity are discussed. The shooting strategies, selection of the images, and presentation of the project is outlined. Finally, the essay discusses the project’s documentary relevance.


Author(s):  
R. Edgecock ◽  
V. V. Bratishko ◽  
I. V. Zinchenko ◽  
S. H. Karpus ◽  
D. O. Milko ◽  
...  

Annotation Purpose. Summarize the regulatory and technological requirements for the production of organic (organo-mineral) fertilizers on the base of sewage sludge. Methods. Analysis and generalization of the requirements of regulatory documents on the management of organic waste and their use as raw materials for the production of organic fertilizers and soil improvers. Results. The current legislative, departmental and regulatory documentary base in Ukraine concerning the treatment of sediment resulting from biological sewage treatment at municipal wastewater treatment plants for its further use in agriculture as fertilizers is analysed. Indicators are identified and analysed to determine the possibility, feasibility, efficiency and scope of organic fertilizers produced using sewage sludge. The analysis of changes in the content of organic matter and total nitrogen in the sewage sludge during its storage at the sewage treatment plant sites is presented. The technological feasibility of using sludge of different shelf life in composting production has been determined. Conclusions 1. The regulatory framework of Ukraine contains a sufficiently complete list of indicators that should be met by organic raw materials (sewage sludge) for further use as organic fertilizers. Some of these indicators – bio security and heavy metals content – can be improved in the composting process of fertilizers. 2. Fresh sediment, as well as sediment accumulated in the last late autumn and winter periods, is of main value for use as a raw material in the production of organic fertilizers. 3. The use in the production of compost sludge stored on sludge sites for a period of half a year or more requires special control of the process of decontamination. In this case, it is advisable to use additional means of wastewater decontamination. Keywords: heavy metals, manure, humus, decontamination, composting, organic fertilizers, sewage sludge.


2013 ◽  
Vol 51 ◽  
pp. 205-213 ◽  
Author(s):  
Cesar Valderrama ◽  
Ricard Granados ◽  
Jose Luis Cortina ◽  
Carles M. Gasol ◽  
Manel Guillem ◽  
...  

Author(s):  
David O. Omole ◽  
Julius M. Ndambuki

This chapter critically assesses the administration of land and water resources in Nigeria. Reasons why the Land Use Act has not met its objectives are discussed. It also assesses reasons why, despite abundant water resources, numerous laws, and multiple governing institutions, Nigeria is still struggling to meet the national demand for water supply. The chapter concludes by suggesting specific amendments to the administration of both land and water resources. The main thrust of the suggested amendments is to address the current situation where government arrogates absolute authority on all land and water resources to itself. It is suggested that the government should consider adopting a multi-lateral relationship where government, private investors, traditional landowners, and prospective land buyers are co-decision makers in charting the future for the administration of land and water resources. This is aimed at eliminating associated problems such as delays, tenure insecurity, and proliferation of peri-urbanization in the current system.


2014 ◽  
Vol 9 (4) ◽  
pp. 566-574 ◽  
Author(s):  
U. Ballabio ◽  
T. Vollmeier

Thermal treatment is an efficient solution for the sewage sludge disposal, able to deal with the environmental problems related to some harmful elements inside sludge itself, as heavy metals, hormones, pharmaceutical derivates etc. This presentation wants to show the several reliable technologies available today, able to fulfil the requirements for efficiency and cheapness. Other solutions with interesting potentialities are now in a research phase, and they show promising future possibilities of application also from the point of view of the environmental acceptability related to these technologies. In addition to the solutions for the sludge thermal treatment, it will be shown the issue of the phosphorus recovery from sewage sludge, a topical issue that will influence the choices for the sludge disposal in the next years.


Sign in / Sign up

Export Citation Format

Share Document