scholarly journals The Influence of Sewage Sludge Content and Sintering Temperature on Selected Properties of Lightweight Expanded Clay Aggregate

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3363
Author(s):  
Jolanta Latosińska ◽  
Maria Żygadło ◽  
Przemysław Czapik

Wastewater treatment processes produce sewage sludge (SS), which, in line with environmental sustainability principles, can be a valuable source of matter in the production of lightweight expanded clay aggregate (LECA). The literature on the influence of SS content and sintering temperature on the properties of LECA is scarce. This paper aims to statistically evaluate the effects of SS content and sintering temperature on LECA physical properties. Total porosity, pore volume, and apparent density were determined with the use of a density analyzer. A helium pycnometer was utilized to determine the specific density. Closed porosity was calculated. The test results demonstrated a statistically significant influence of the SS content on the specific density and water absorption of LECA. The sintering temperature had a significant effect on the specific density, apparent density, total porosity, closed porosity, total volume of pores, and water absorption. It was proved that a broad range of the SS content is admissible in the raw material mass for the production of LECA.

2010 ◽  
Vol 168-170 ◽  
pp. 446-450 ◽  
Author(s):  
Jun Zhe Liu ◽  
Hai Hua Zhou ◽  
Zhi Min He ◽  
Zhen Wen Zhang

In this paper, using river silt from Ningbo as main material, through studying the properties and mixture ratio of raw material and sintering parameters, successfully sintered high mixing volume of silt, large range of sintering temperature, low-water-absorption and high-strength lightweight aggregates, and analyzed its microstructure, providing a better way of resourcization for the Yongjiang silt. The results show that Yongjiang silt supplemented with fly ash and other supplementary materials can be sintered high performance ceramsite, lightweight high-strength low water absorption ceramisite is because the ceramsite has dense enamel structure on surface and honeycomb closed fine porous structure in internal.


2019 ◽  
Vol 39 (3-4) ◽  
pp. 111-118 ◽  
Author(s):  
Narumon Lertcumfu ◽  
Kannikar Kaewapai ◽  
Pharatree Jaita ◽  
Tawee Tunkasiri ◽  
Somnuk Sirisoonthorn ◽  
...  

The present study concentrated on porous geopolymer composites (between calcined clay and metakaolin) using hydrogen peroxide as a pore generation agent. To reduce as well as recycle the waste from a factory, calcined clay waste was used as starting material. The geopolymer was synthesized via a geopolymerization method by a reaction with an alkaline solution, using the ceramic waste and metakaolin as raw materials. Different amount of olive oil (0–15 wt%) were added to the samples. The olive oil affected the pore formation of the geopolymers. The effects of olive oil, a surfactant, on the properties of the geopolymer composites were investigated. Apparent density and compressive strength of the samples tended to decrease with the additive, while water absorption and total porosity had the opposite effect. However, a variation in the apparent density and water absorption values was observed, due to the formation of closed pores in the samples. The trend of compressive strength value was related with total porosity. A model for pore formation was proposed in this work. The results suggest that this material can be used as a geopolymer foam.


2011 ◽  
Vol 383-390 ◽  
pp. 3346-3351
Author(s):  
Min Yue ◽  
Qin Yan Yue ◽  
Yuan Feng Qi ◽  
Bao Yu Gao ◽  
Hui Yu

This study investigated the properties of lightweight sludge-flyash-clay ceramic by different sintering temperature. Different ratios of dry sewage sludge and fly ash with 50 wt% of clay were mixed and pressed into raw pellets. After drying and preheating treatment, the raw pellets were sintered at temperatures ranging from 1050 to 1150 °C, in 25 °C increments for 10 min. The physical properties (bulk density, grain density, water absorption and rate of expansion) were the indexes used to determine the technical parameters for the preparation of lightweight sludge-fly ash ceramic pellets. The results suggested that temperature was the key control factor of sintering process, and 1150 °C was the starting point of the bloating reaction. In the case of a small fraction in the raw material configuration, the mass ratios of sludge to fly-ash had little effect on the properties.


2018 ◽  
Vol 912 ◽  
pp. 55-59
Author(s):  
Lucas Fonseca Amaral ◽  
Carlos Maurício Fontes Vieira ◽  
G.C.G. Delaqua ◽  
M. Nicolite

In this study the objective was to evaluate the properties affected by the incorporation of phyllite and sand as raw materials in the composition of ceramic material for the roofing tiles production with light color using kaolinite clay from Campos dos Goytacazes – RJ, Brazil as main raw material. Specimens were prepared by uniaxial pressing at 20 MPa and fired at 950oC. The determined technological properties were: dry apparent density, linear shrinkage, water absorption and mechanical strength (three point bend test). The results indicated that the incorporation of sand and phyllite improved the dry apparent density, reduced loss on ignition and aluminum oxide content of the pure clay. These factors resulted in a reduced open porosity, improving water absorption and linear shrinkage. However, the mechanical strength was compromised due to the increase of quartz content.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 485
Author(s):  
Vera Schmid ◽  
Antje Trabert ◽  
Judith (Schäfer) Keller ◽  
Mirko Bunzel ◽  
Heike P. Karbstein ◽  
...  

Food by-products can be used as natural and sustainable food ingredients. However, a modification is needed to improve the technofunctional properties according to the specific needs of designated applications. A lab-scale twin-screw extruder was used to process enzymatically treated apple pomace from commercial fruit juice production. To vary the range of the thermomechanical treatment, various screw speeds (200, 600, 1000 min−1), and screw configurations were applied to the raw material. Detailed chemical and functional analyses were performed to develop a comprehensive understanding of the impact of the extrusion processing on apple pomace composition and technofunctional properties as well as structures of individual polymers. Extrusion at moderate thermomechanical conditions increased the water absorption, swelling, and viscosity of the material. An increase in thermomechanical stress resulted in a higher water solubility index, but negatively affected the water absorption index, viscosity, and swelling. Scanning electron microscopy showed an extrusion-processing-related disruption of the cell wall. Dietary fiber analysis revealed an increase of soluble dietary fiber from 12.6 to 17.2 g/100 g dry matter at maximum thermo-mechanical treatment. Dietary fiber polysaccharide analysis demonstrated compositional changes, mainly in the insoluble dietary fiber fraction. In short, pectin polysaccharides seem to be susceptible to thermo-mechanical stress, especially arabinans as neutral side chains of rhamnogalacturonan I.


2021 ◽  
Vol 11 (2) ◽  
pp. 579
Author(s):  
Max Schmid ◽  
Selina Hafner ◽  
Günter Scheffknecht

The conversion of biogenic residues to fuels and chemicals via gasification and synthesis processes is a promising pathway to replace fossil carbon. In this study, the focus is set on sewage sludge gasification for syngas production. Experiments were carried out in a 20 kW fuel input bubbling fluidized bed facility with steam and oxygen as gasification agent. In-situ produced sewage sludge ash was used as bed material. The sensitivity of the key operation parameters gasifier temperature, oxygen ratio, steam to carbon ratio, and the space velocity on the syngas composition (H2, CO, CO2, CH4, CxHy, H2S, COS, NH3, and tars) was determined. The results show that the produced syngas has high H2 and CO concentrations of up to 0.37 m3 m−3 and 0.18 m3 m−3, respectively, and is thus suitable for synthesis of fuels and chemicals. By adjusting the steam to carbon ratio, the syngas’ H2 to CO ratio can be purposely tailored by the water gas shift reaction for various synthesis products, e.g., synthetic natural gas (H2/CO = 3) or Fischer–Tropsch products (H2/CO = 2). Also, the composition and yields of fly ash and bed ash are presented. Through the gasification process, the cadmium and mercury contents of the bed ash were drastically reduced. The ash is suitable as secondary raw material for phosphorous or phosphate fertilizer production. Overall, a broad database was generated that can be used for process simulation and process design.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3863
Author(s):  
Deng-Fong Lin ◽  
Wei-Jhu Wang ◽  
Chia-Wen Chen ◽  
Kuo-Liang Lin

Municipal incinerator bottom ash (MIBA) and sewage sludge ash (SSA) are secondary wastes produced from municipal incinerators. Landfills, disposal at sea, and agricultural use have been the major outlets for these secondary wastes. As global emphasis on sustainability arises, many have called for an increasing reuse of waste materials as valuable resources. In this study, MIBA and SSA were mixed with clay for ceramic tile manufacturing in this study. Raw materials firstly went through TCLP (Toxicity Characteristic Leaching Procedure) to ensure their feasibility for reuse. From scanning electron microscopy (SEM), clay’s smooth surface was contrasted with the porous surface of MIBA and SSA, which led to a higher water requirement for the mixing. Specimens with five MIBA mix percentages of 0%, 5%, 10%, 15%, and 20% (wt) and three SSA mix percentages of 0%, 10%, and 20% (wt) were made to compare how the two waste materials affected the quality of the final product and to what extent. Shrinkage tests showed that MIBA and SSA contributed oppositely to tile shrinkage, as more MIBA reduced tile shrinkage, while more SSA encouraged tile shrinkage. However, as the kiln temperature reached 1150 °C, the SiO2-rich SSA adversely reduced the shrinkage due to the glass phase that formed to expand the tile instead. Both MIBA and SSA increased water tile absorption and reduced its bending strength and wear resistance. Increasing the kiln temperature could effectively improve the water absorption, bending strength, and wear resistance of high MIBA and SSA mixes, as SEM showed a more compact structure at higher temperatures. However, when the temperature reached 1100 °C, more pores appeared and seemingly exhausted the benefit brought by the higher temperature. Complex interactions between kiln temperature and MIBA/SSA mix percentage bring unpredictable performance of tile shrinkage, bending strength, and water absorption, which makes it very challenging to create a sample meeting all the specification requirements. We conclude that a mix with up to 20% of SSA and 5% of MIBA could result in quality tiles meeting the requirements for interior or exterior flooring applications when the kiln temperature is carefully controlled.


2012 ◽  
Vol 174-177 ◽  
pp. 1079-1085 ◽  
Author(s):  
Si Nae Jo ◽  
Yoo Tack Kim ◽  
Seung Gu Kang ◽  
Chang Sam Kim

The artificial lightweight aggregates (ALAs) were manufactured using dredged soil produced at thermal power plant and waste catalyst slag by direct sintering method at 1050~1250°C for 10min. The ALAs of 100% dredged soil showed the black core phenomenon even at the low sintering temperature as 1050°C and become lightened by bloating pores in black core area with sintering temperature. On the other hand, the aggregates with 100% waste catalyst slag did not showed black coring and bloating phenomenon and had the low forming ability and many cracks inside. Adding the dredged soil to the waste catalyst slag decrease the specific gravity by promoting the black coring and bloating inside. The water absorption(%) of ALAs decreased with sintering temperature. The ALAs fabricated in this study showed the specific gravity of 0.8~2.0 and water absorption of 2~16% so it could be applied to various fields such as the lightweight concrete or the field of the porous carriers for purification of a contaminated soil or water.


2016 ◽  
Vol 881 ◽  
pp. 383-386 ◽  
Author(s):  
Raimundo J.S. Paranhos ◽  
Wilson Acchar ◽  
Vamberto Monteiro Silva

This study evaluated the potential use of Sugarcane Bagasse Ashes (SBA) as a flux, replacing phyllite for the production of enamelled porcelain tile. The raw materials of the standard mass components and the SBA residue were characterized by testing by XRF, XRD, AG, DTA and TGA. Test samples were fabricated, assembled in lots of 3 units and sintered at temperatures of 1150 ° C to 1210 ° C. The results of the physical properties, mechanical properties and SEM of the sintered samples, showed that the formulation, G4 - in which applied 10% of SBA replacing phyllite, sintering temperature 1210 ° C showed better performance as the previously mentioned properties due to the formation of mullite crystals, meeting the prerequisites of standards for enamelled porcelain tile, while reducing the environmental impact and the cost of production.


Sign in / Sign up

Export Citation Format

Share Document