scholarly journals Bacteriological and physical quality of fiche drinking water from households and reservoirs, Oromia, Ethiopia

Author(s):  
Israel Sebsibe ◽  
Birhanu Degaga ◽  
Gezahegn Feye ◽  
Tsige Tekle

Abstract Drinking water is the major source of bacteria pathogens in developing countries along with poor sanitation and contamination of food with a pathogen. More than half of the population of the country uses unimproved sanitation facilities while 36% of them practiced open defecation. The aim of the study was to investigate the suitability of public water for drinking. The study is designed to include a survey of 90 respondents and experimental analysis of 170 water samples from households and reservoirs. Water quality parameters, such as temperature, electrical conductivity, turbidity, total dissolved solids, and bacteriological parameters like total coliforms (TC) and fecal coliforms (FC) were determined. Many of the respondents (88.8%) remarked that the water has no smells, tastes, and color. The experimental analysis confirmed that temperature (19.7 °C), electrical conductivity (269.63 μS/cm), turbidity (1.17 NTU), and total dissolved solids (134.3 mg/L) were found below the prescribed limit of World Health Organization guidelines for drinking water. Total coliforms (9.29 CFU/100 mL) and fecal coliforms (5.07 CFU/100 mL) were detected from pipe water sources during the wet season showing non-compliance with the guidelines. The reservoir samples were free from bacterial contamination. The main point of drinking water contamination was the household where unsafe water handling practice was a common habit in the study area. Hence, awareness conception training on safe water handling practices is highly recommended for the communities.

2017 ◽  
Vol 28 (1) ◽  
pp. 142
Author(s):  
Muhanad H. Alrakabi ◽  
Esraa S. Ramadan

It was calculated the average concentrations of elements manganese, iron, cobalt, nickel, copper, zinc, arsenic, cadmium and lead in the sixteen samples of drinking water (tap water), were collected from different areas in the Baghdad city. The Results indicated that the average of concentrations of the elements Mn, Fe, Pb, Ni and Cd (0.44ppm, 0.49ppm, 0.04ppm, 0.17ppm and 1.2ppm respectively) higher than permissible limit while the concentrations of elements Cu and Zn (0.11ppm and 0.14ppm respectively) were lower than the permissible limit of World Health Organization (WHO) standards (1ppm and 3ppm) respectively for drinking water and the concentration of Arsenic in the nuclear lab sample in college of sciences - Mustansiriyah University was higher than permissible limit. All the drinking water samples were analyzed and determined the physical and chemical properties such as Electrical Conductivity (EC), pH, and Total Dissolved Solids (TDS). The highest value was (1064μS/cm) in Al-Tuwaitha sample and the lowest value (531μS/cm) in Al-Sadr City (Sector 7) sample for the Electrical Conductivity. The pH values ranged from (7.0-8.2). The average levels of Total Dissolved Solids (TDS), the highest value was 550 mg/L in the Diyala Bridge sample while the lowest value 276mg/L in Al-Sadr City (Sector 7) sample. The results were compared with national and international standards, and it’s also showed that the values of the parameters within the permissible limit of World Health Organization (WHO) standards, except the Electrical Conductivity values for some samples were higher than permissible limit. According to these results, all the water projects must be monitored as well as using the proper and modern techniques for treatment the drinking water.


2017 ◽  
Vol 13 (15) ◽  
pp. 69
Author(s):  
Sohounou Marc ◽  
Vissin Expédit Wilfrid ◽  
Sintondji Luc Olivier ◽  
Houssou Christophe S. ◽  
Agbossou K. Euloge ◽  
...  

Water, source of life, is also a source of disease when it is polluted. The aim of this study is to analyze the physicochemical quality and the bacteriological quality of the wells, boreholes and tank for drinking water in the Commune of Allada. The methodology is based on the collection of data, data processing and analysis carried out at the Laboratory for Quality Control of Water and Food (LCQEA) of the Ministry of Health. From the water sampling carried out at three (03) traditional wells, two (02) boreholes, two (02) tanks and water of river (02), bacteriological and physicochemical analysis were performed. The results showed that pH is higher at the tank than other water sources. Well 3 (P3) has a very high electrical conductivity (EC) which was 384.95 μS / cm and 192.47 mg / L for total dissolved solids (TDS). The tank 2 exhibited high value in pH 9.14; 71.72 (μS / cm) for the electrical conductivity (CE) and 35.86 mg / L, in total dissolved solids (TDS). Well 2 (P2) has a high turbidity of 4.53 (NTU) at all analyzed water points. The concentration of iron, copper nickel and cobalt remains low(less than 0.4 mg / L).Wells 2 and tank 1 are concentrated in lead, respectively 20.75mg / L and 13.71mg / L. Tank 1 and 2 have a high concentration of cadmium compared to other water points. The presence of Escherichia coli with a high concentration at home SONEB (39 CFU) and at well 2 (7.10 2 ) was found. In view of these results some recommendations were made.


2021 ◽  
Author(s):  
Benjamin Ezekeil Bwadi ◽  
Mohammed Bakoji Yusuf ◽  
Ibrahim Abdullahi ◽  
Clement Yakubu Giwa ◽  
Grace Audu

Water is very significant in the development of a stable community, but many societies are confronted with the challenges of poor wastes management system with indiscriminate waste disposal and bad land practices, which easily pollute water sources and consequently degrade water quality. This study was to analyze the physicochemical properties of ground water from multiple point sources in Jalingo, Taraba state of Nigeria. Water samples were collected from twenty seven (27) sites from the study area during the raining and dry seasons. The analysis was carried out to determining the physico-chemical properties of the ground water and comparing with the World Health Organization (WHO) standard for drinking water. The physicochemical properties of ground water analyzed include; odor, taste, temperature and electrical conductivity were tested in the field using water meter tester. Whereas pH, total dissolved solids, alkalinity, hardness, salinity, iron, manganese, fluoride, nitrate, nitrite, chloride, sulphate and dissolved oxygen were analyzed in the laboratory using Wagtech potable water testing equipment. The physical properties of water analyzed were temperature, odor, taste, and turbidity. Whereas the chemical properties of water analyzed were pH, electrical conductivity (EC), total dissolved solids (TDS), alkalinity, hardness, salinity, iron (Fe), manganese (Mn), fluoride (F−), nitrate (NO3−), nitrite (NO2−), Chloride (Cl−), sulphate (SO42−), dissolved oxygen (DO).The result shows the range of the mean values of the temperature(26.7–33.1) oC, p H(6.5–8.9), Fe (0.01–0.08 mg/L), NO3−(0.01–38.5 mg/l), NO2−(0.01–0.09 mg/l), Mn (0.01–0.17 mg/l), F(0.01–0.82 mg/l), alkalinity(39-204 mg/l), salinity (42-508 mg/l), SO4(14-93 mg/l), total dissolved solids (6–637) mg/l, turbidity(0.4–10.6 mg/l), hardness(48-187 mg/l), and fecal coliforms(1–4)fcu/100mi, dissolved oxygen(1.1–6.87)mg/l, EC(10.99–1066)ohm/cm, Cl (10-320 mg/l). All except alkalinity and hardness are within the WHO permissible standards of quality drinking water. The highest alkalinity (204 mg/l), hardness (187 mg/l) and low dissolved oxygen (6.87 mg/l) attributed to the high concentration of dissolved salts and basic cations in the water. The methodology applied in the study was effective in analyzing the physicochemical properties of water in the study area. Therefore, it was recommended that there should be frequent water source testing by stakeholder in water resources with the view to treating the water. Policy maker should also enforce the regulation of the use of chemical fertilizers, agro-chemicals and the indiscriminate waste disposal.


2014 ◽  
Vol 4 (2) ◽  
pp. 467-476
Author(s):  
Nisha Sharma ◽  
Jaspal Singh ◽  
Barjinder Kaur

Radionuclides (uranium, thorium, radium, radon gas etc.) are found naturally in air, water, soil and rock. Everyday, we ingest and inhale these radionuclides through the air we breathe and through food and water we take. Out of the internal exposure via ingestion of radionuclides, water contributes the major portion. The natural radioactivity of water is due to the activity transfer from bed rock and soils. In our surveys carried out in the past few years, we have observed high concentrations of uranium and total dissolved solids (TDS) in drinking waters of some southern parts of Punjab State exceeding the safe limits recommended by national and international agencies. The main drinking water source is the underground water procured from different depths. Due to the highly saline taste, disorders in their digestive systems and other ailments, people are installing reverse osmosis (RO) systems in their houses. Some RO systems have been installed on commercial basis. The state government is also in the process of installing community RO systems at the village level. As high values of uranium are also undesired and may pose health hazards due to radioactivity and toxicity of uranium, we have conducted a survey in the field to study the performance of various RO systems for removal of uranium and TDS. Water samples from about forty RO systems from Faridkot, Mansa, Bathinda and Amritsar districts of Punjab State were collected and analyzed. Our results show that some RO systems are able to remove more than 99% of uranium in the underground waters used for drinking purposes. TDS values are also reduced considerably to the desired levels. So RO systems can be used to avoid the risk of unduly health problems posed by high concentrations of uranium and TDS in drinking water.


2019 ◽  
Vol 7 (1) ◽  
pp. 11-16
Author(s):  
Abdulkhaleq K Mahmood ◽  
Ali A Kamal ◽  
Ako R Hama

The scarcity of safe drinking water is one of the problems faced by the majority of cities in the world. Kirkuk city is one of these cities, which suffer from a shortage of drinking water. People have adopted the use of different rooftop tanks to overcome this problem. This research focuses on studying the effect of storage time on the five main characteristics of drinking water, which include, acid index (pH), electrical conductivity (EC), total suspended solids (TSS), total dissolved solids (TDS), and turbidity (Tr). Three types of tanks were used predominantly (galvanized metal, plastic, and aluminum tanks). By analyzing the results, the characteristics of three samples of municipal source water obtained. Three samples were taken from each tank at different periods (4, 8, and 12 days). The results showed that the storage time affected the characteristics of drinking water. These characteristics differed from one tank to another. Metal tanks showed an increase in total dissolved solids, due to the evaporation process, even as plastic and aluminum tanks showed an increase in pH. The properties of all storage water tanks changed with times, but overall, the results were within the Iraqi limitation for drinking water. It was not easy to only depend on the results of this study to believe that any one type of water tank was better than the other, as the values of most of the variables studied had varied from one type to other. However, many studies have indicated a number of health risks, and most significantly with regard to plastic tanks, which are said to contain dangerous organic compounds that can be transferred to water. Metal tanks can cause zinc leakage, caused by a number of environmental factors at high levels. Aluminum tanks also can have an effect on the water in tanks.


2007 ◽  
Vol 53 (6) ◽  
pp. 688-694 ◽  
Author(s):  
Annie Locas ◽  
Christine Barthe ◽  
Benoit Barbeau ◽  
Annie Carrière ◽  
Pierre Payment

A 1 year study was undertaken on groundwater that was a source of drinking water in the province of Quebec, Canada. Twelve municipal wells (raw water) were sampled monthly during a 1 year period, for a total of 160 samples. Using historic data, the 12 sites were categorized into 3 groups: group A (no known contamination), group B (sporadically contaminated by total coliforms), and group C (historic and continuous contamination by total coliforms and (or) fecal coliforms). Bacterial indicators (total coliform, Escherichia coli , enteroccoci), viral indicators (somatic and male-specific coliphages), total culturable human enteric viruses, and noroviruses were analyzed at every sampling site. Total coliforms were the best indicator of microbial degradation, and coliform bacteria were always present at the same time as human enteric viruses. Two samples contained human enteric viruses but no fecal pollution indicators (E. coli, enterococci, or coliphages), suggesting the limited value of these microorganisms in predicting the presence of human enteric viruses in groundwater. Our results underline the value of historic data in assessing the vulnerability of a well on the basis of raw water quality and in detecting degradation of the source. This project allowed us to characterize the microbiologic and virologic quality of groundwater used as municipal drinking water sources in Quebec.


2021 ◽  
Vol 18 (1) ◽  
pp. 1-6
Author(s):  
Roselyn Naidu ◽  
Lionel Joseph ◽  
Syed Sauban Ghani

The current study investigated drinking water quality of samples taken from Arolevu village, a locality situated in Nadi, Fiji. The groundwater samples were collected and subjected to a comprehensive physicochemical and biological analysis. The analysis for the drinking water sample was conducted seasonally, six times a year, that is, three for the dry season and three for the wet season. The results retrieved from the analysis were compared to its maximum contamination levels (MCLs) based on the health-based guidelines provided by the World Health Organization (WHO). The WHO standards were used as an attribute to determine the sources of contaminants likely to be present at the study site. A degradation trend in drinking water quality in the context of climate change may lead to potential health impacts. Hence, it is important to understand seasonal variations in drinking water quality. A proper understanding of the drinking water quality through seasonal water analysis for nitrate, nitrite, potassium, calcium, magnesium and chlorine content as well as its microbiological presence to reduce preventable risks such as using calculated amounts of fertilisers and upgrading the sewerage system to alleviate drinking water contamination is devised through this study.


Desalination ◽  
2009 ◽  
Vol 249 (1) ◽  
pp. 217-223 ◽  
Author(s):  
Romain Broséus ◽  
John Cigana ◽  
Benoit Barbeau ◽  
Catherine Daines-Martinez ◽  
Hervé Suty

2013 ◽  
Vol 726-731 ◽  
pp. 3538-3541
Author(s):  
Kun Xiao ◽  
Chang Chun Zou ◽  
Biao Xiang

In order to research the groundwater quality of the Taikang Formation in Tertiary in west of Daqing Oilfield, resistivity logging data of 140 wells in the study area were analyzed to forecast the groundwater total dissolved solids (TDS) distribution of the plane. When the resistivity logging value (Rt) of the Taikang Formation in Tertiary is above 45Ω.m and its corresponding value of Formation water TDS is below 1000 mg/L, the quality of groundwater accords with life standards for drinking. The south area of Hongweixing well area and the east of Xishuiyuan well area, including Ranghulu, Qianjincun, Dulitun and Nanshuiyuan well area are favorable for high quality groundwater. The research provides the evidences to evaluate the groundwater quality in west Daqing Oilfield and determine specific well location, improving the efficiency of exploring the underground drinking water.


Sign in / Sign up

Export Citation Format

Share Document