scholarly journals Source water quality requirements for artificial groundwater recharge

Author(s):  
K. Hägg ◽  
S. Chan ◽  
T. Persson ◽  
K. M. Persson

Abstract This study was an investigation of the need for pre-treatment of a new raw water source for artificial groundwater recharge. The study was done through a column test, well sampling and survey data relating to 11 artificial recharge plants in Sweden. The column test showed that only 30% of the natural organic matter (NOM) was removed from the new raw water source during infiltration. The survey revealed that the new water source's quality was within the range requiring pre-treatment prior to infiltration. The well sampling results showed a significant correlation between the NOM-content in the raw and treated waters for WTPs without pre-treatment (r = 0.78 and ρ = 0.04), indicating one of the short-term limitations of artificial recharge. The study results indicate that the new raw water source is unsuitable for direct use in artificial recharge and that treatment is required prior to infiltration.

2020 ◽  
Vol 20 (4) ◽  
pp. 1534-1545
Author(s):  
K. Hägg ◽  
T. Persson ◽  
O. Söderman ◽  
K. M. Persson

Abstract The natural organic matter (NOM) and color content of surface waters are increasingly becoming an issue for artificial groundwater recharge plants. Water from Lake Bolmen, in southern Sweden, had in 2017 an annual average NOM and color content of 8.6 mg/L total organic carbon (TOC) and 57 mg Pt/L respectively, and values ranging from 7.8 to 9.6 mg/L TOC and 50–70 mg Pt/L. Since water from Lake Bolmen will be used at Vomb Water Works, an artificial groundwater recharge plant, the high NOM-content of Lake Bolmen must be reduced prior to aquifer recharge. From experiences of full-scale operations of chemical flocculation, lamella sedimentation and rapid sand filtration using ferric chloride, three different pre-treatment methods were proposed; conventional precipitation, stand-alone direct precipitation before ultrafiltration (UF), and conventional precipitation with ultrafiltration after lamella sedimentation. In this study, a hollow fiber membrane (MWCO of 150 kDa) was used in different configurations during a 15 months pilot trial. The results showed the possibility to reduce NOM equal to conventional precipitation when a stable net-flux of 40 and 70 L/(m2· h) was used for direct precipitation before UF and conventional precipitation with UF, respectively. This paper presents these treatment methods and evaluates their viability as full-scale treatment steps.


Author(s):  
Jing Li ◽  
Kristofer Hägg ◽  
Kenneth M. Persson

Artificial groundwater recharge is commonly used for drinking water supply. The resulting water quality is highly dependent on the raw water quality. In many cases, pre-treatment is required. Pre-treatment improves the drinking water quality, although how and to what extent it affects the subsequent pond water quality and infiltration process, is still unknown. We evaluated two treatment systems by applying different pre-treatment methods for raw water from a eutrophic and temperate lake. An artificial recharge pond was divided into two parts, where one received raw water, only filtered through a micro-screen with 500 µm pores (control treatment), while the other part received pre-treated lake water using chemical flocculation with polyaluminium chloride (PACl) combined with sand filtration, i.e. continuous contact filtration (contact filter treatment). Water quality such as cyanobacterial biomass, microcystin-LR as well as organic matter and nutrients were measured in both treatment processes. We found cyanobacterial biomass and microcystin-LR level after the contact filter treatment was significantly different from the control treatment and also significantly different in the pond water. In addition, with contact filter treatment, total phosphorus (TP) and organic matter removal were significantly improved in the end water, TP was reduced by 96 % (< 20 µg/L) and the total organic carbon (TOC) was reduced by 66 % instead of 55 % (TOC content around 2.1 mg/L instead of 3.0 mg/L). This full-scale onsite experiment demonstrated effective pre-treatment would benefit a more stable water quality system, with less variance and lower cyanotoxin risk. In a broader drinking water management perspective, the presented method is promising to reduce cyanotoxin risk, as well as TP and TOC, which are all predicted to increase with global warming and extreme weather.


2013 ◽  
Vol 17 (2) ◽  
pp. 637-650 ◽  
Author(s):  
H. Hashemi ◽  
R. Berndtsson ◽  
M. Kompani-Zare ◽  
M. Persson

Abstract. Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady- and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events, the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system, the recharge volume can be increased even for small flood events, while the recharge through the river channel increases only for major flood events.


2021 ◽  
Author(s):  
Monica Chakraborty ◽  
Ashok Tejankar ◽  
Ramamoorthy Ayyamperumal

Abstract We have selected the site suitability for artificial groundwater recharge in basaltic terrain in India. The overarching aim of this research is to identify appropriate locations for artificial groundwater recharge in the Godavari river basin in the semi-arid zone of Buldhana district, Maharashtra, India. The research involves the selection of an appropriate location with an artificial recharge, the use of weighted values in a (GIS) environment, and the development of thematic layers. The precise type of artificial recharge system, such as a check dam, nullah bund, drainage ditch trying to plug, or percolation ponds, is chosen. Water harvesting considers the availability of land, conventionally, while on the local conditions depends the suitability of a particular artificial recharge technique and the area which is to get benefited. As a result, decisions on the site for water conservation and structure construction could only be undertaken after detailed field research. In stipulated time, the GIS modelling approach provides an excellent tool for the identification of recharge zones with suitable structures. The integrated study helps in designing a suitable groundwater management plan for the areas such as the basaltic terrain.


2012 ◽  
Vol 9 (8) ◽  
pp. 9767-9807
Author(s):  
H. Hashemi ◽  
R. Berndtsson ◽  
M. Kompani-Zare ◽  
M. Persson

Abstract. Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system the recharge volume can be increased even for small flood events while the recharge through the river channel increases only for major flood events.


2018 ◽  
Vol 74 ◽  
pp. 09001 ◽  
Author(s):  
Wednes Suci Pradafitri ◽  
Setyo Sarwanto Moersidik ◽  
Chairil Abdini

Environmental pollution, resource degradation, and global warming are some examples of environmental problems that have occurred in various countries, including Indonesia. Poor quality, quantity, and continuity of raw water condition make water supply scarce. These problems can be overcome by an intervention to the demand and supply. One of the cities experience this condition is the province of DKI Jakarta. East Flood Canal (BKT) is one of the infrastructure facilities of DKI Jakarta province as a potential source of raw water supply. The study aims to analyze the factors affecting BKT water and the sustainability of BKT water in DKI Jakarta as the raw" water source of PDAM in terms of quality. Analysis of land use and social factors using GIS (Geographic Information System) and questionnaire methods. Analysis of the quality of BKT water using laboratory tests and literature studies. The results of this research are socio-economic activity and land use changes affect the water quality of BKT. The East Canal Flood can become the raw water source of PDAM DKI Jakarta through pre-treatment. This research is very important because it provides a new innovation in overcoming the problem of availability of raw water which is increasingly limited especially in DKI Jakarta.


Author(s):  
Jing Li ◽  
Kristofer Hägg ◽  
Kenneth M. Persson

Artificial groundwater recharge is commonly used for drinking water supply although the resulting water quality is highly dependent on the raw water quality, and in many cases, pre-treatment is required. Such pre-treatment improves the drinking water quality, although how and to what extent pre-treatment affects the subsequent pond infiltration process is still unknown. Here we evaluate the impact of two different pre-treatment methods of water from a eutrophic, temperate lake. An artificial recharge pond was divided into two parts, where one received raw water from a lake only filtered through a 500 µm pore size drum filter, while the other part received pre-treated lake water using chemical flocculation with polyaluminium chloride (PACl), combined with sand filtration (contact filtration). Changes in water quality were assessed at different stages in the two treatment processes. We show that contact filtration reduced phosphorus with 96 %. Moreover, the total organic carbon (TOC) reduction was improved from 55 % to 70 %, corresponding to an average reduction from 3.5 mg/L to 2.4 mg/L In addition, the pre- treatment in the artificial recharge pond reduced the cyanobacteria blooms and reduced the microcystin level. However, there were no sigificant differences in microcystin levels in the groundwater, i.e. the artifical recharge infiltration pond was effective for microcystin removal even without contact filtration. Hence, in a broader drinking water management perspective, the presented method is promising to reduce the levels of cyanobacterial toxins, as well as nutrients and TOC, which are all predicted to increase in a future climate change perspective.


2017 ◽  
Vol 12 (2) ◽  
pp. 105-116
Author(s):  
Pulung A. Pranantya ◽  
Nurlia Sadikin

In terms of geology, most areas in south of the Gunungkidul District in Central Java consist of the Wonosari formation limestone. The land is generally very dry and source of raw water is also difficult to reach. Findings on the existence of underground river in caves, however, indicate the potential amount of water within the area, especially in the eastern part of the Gunungkidul District. Although limited information available, some fishermen have discovered that Seropan cave contains fresh water source. This cave is situated at 65 m below the cliff. Initial exploration, which done using a multichannel resistivity method, confirmed the availability of freshwater in the cave and underground river. The isopach of cave depth is found in ranges of 80 200 m below the ground surface. The water of Seropan cave can be utilized by implementing pipeline or by drilling at the suggested point based on the interpretation results, i.e. 110o2223.6388 EL 8o42.874 SL. [DY1][PP2][DY1]Perbaiki grammarIn terms of geology, most areas in south of Gunungkidul District in Central Java consist of the Wonosari formation limestone. The land is generally very dry and source of raw water is also difficult to reach. Findings on the exixtence of underground river in caves, however, indicate potential amount of water within the area especially in eastern part of Gunungkidul District. Although limited information available, some fishermans has discovered that Seropan cave contain fresh water source. This cave is situated at 65 m below the cliff. Initial exploration, which done using multichannel resistivity method, confirmed the availability of freshwater in the cave and underground river. The iso pach of cave depth is found in ranges of 80 200 m below the ground surface. The water of Seropan cave can be utilized by implementing pipeline or by drilling at the suggested point based on the interpretation results i.e. 110o2223.6388 EL 8o42.874 SL.[PP2]Sudah diperbaiki


Sign in / Sign up

Export Citation Format

Share Document