scholarly journals Effects of mixed irrigation using brackish water with different salinities and reclaimed water on a soil-crop system

Author(s):  
Chuncheng Liu ◽  
Bingjian Cui ◽  
Chao Hu ◽  
Haiqing Wu ◽  
Feng Gao

Abstract To explore the effects of mixed irrigation on soil and crops, a pot experiment was conducted in two salinity levels of brackish water, four levels of mixed brackish-reclaimed water and freshwater irrigation as the control. The soil Na-Cl to Ca-SO4 contents changed, and activities of soil alkaline phosphatase and polyphenol oxidase changed, exhibiting a ‘V’-shaped curve with increasing the proportion of reclaimed water in the mixture. At the same brackish-reclaimed water level, there were no significant differences in alkaline phosphatase and polyphenol oxidase activities except for soil alkaline phosphatase activity decreasing significantly with the increase in salinity under brackish water irrigation. Mixed irrigation obviously improved superoxide dismutase activity but no significant influences on aboveground dry weight, underground biomass or crop physiological indexes (chlorophyll, soluble protein, malondialdehyde, peroxidase, catalase). Based on the integrated biological response index version 2 (IBRv2), the deviation of reclaimed water irrigation was the smallest, followed by 1:1 and 1:2 (3, 5 g/L brackish water salinities, respectively), with IBRv2 values of 7.94, 12.55 and 16.04. Therefore, considering the soil-crop characteristics, limited daily water amount and inadequate pipeline facilities for reclaimed water, the brackish-reclaimed water ratio should be 1:1 and 1:2 at 3, 5 g/L of brackish water, respectively.

2004 ◽  
Vol 61 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Paulo Torres Carneiro ◽  
Pedro Dantas Fernandes ◽  
Hans Raj Gheyi ◽  
Frederico Antônio Loureiro Soares ◽  
Sergio Batista Assis Viana

The cashew crop (Anacardium occiedentale L.) is of great economic and social importance for Northeast Brazil, a region usually affected by water and soil salinity. The present study was conducted in a greenhouse to evaluate the effects of four salinity levels established through electrical conductivity of irrigation water (ECw: 0.7, 1.4, 2.1 and 2.8 dS m-1, at 25ºC), on growth and physiological indexes of five rootstocks of dwarf-precocious cashew varieties CCP06, CCP09, CCP1001, EMBRAPA50, and EMBRAPA51. Plant height, leaf area, dry weight of root, shoot and total; water content of leaves, root/shoot ratio, leaf area ratio, absolute and relative growth rates and rate of net assimilation were evaluated. The majority of the evaluated variables were found to be affected by ECw and the effects varied among clones; however, no significant interactive effects were observed for factors. The value of ECw = 1.39 dS m-1 was considered as a threshold tolerance for the precocious cashew rootstocks used in this study. The dwarf-precocious cashew is moderately sensible to soil salinity during the formation phase of rootstock. Clones EMBRAPA51 and EMBRAPA50 presented, respectively, the least and the best development indexes.


1966 ◽  
Vol 6 (23) ◽  
pp. 374 ◽  
Author(s):  
CT Gates ◽  
KP Haydoc ◽  
PJ Claringbold

Growth response of 22 accessions of Glycine javanica. was studied to detect any significant features that would provide an insight into the mechanisms of salt tolerance. Four levels of salinity, 0.5, 35, 70, and 140 m-equiv. NaCl/l, were imposed in culture solutions for 13 days starting when the plant had three trifoliate leaves. The highest level of salinity had a relatively greater impact on growth than the others. Differences in the dry weight of the glycines at all salinity levels were of similar proportions to those at the control level. This also applied to the laminae, stem f petiole, and roots. The data for plant nitrogen also showed these differences in growth potential at different levels of salinity. The normal capacity for growth of a cultivar seemed to be an important feature in resisting salinity.


2018 ◽  
Vol 31 (4) ◽  
pp. 1008-1016 ◽  
Author(s):  
José Eustáquio Campos Júnior ◽  
José Amilton Santos Júnior ◽  
Juliana Bezerra Martins ◽  
Ênio Farias de França e Silva ◽  
Ceres Duarte Guedes Cabral de Almeida

ABSTRACT The production of vegetables in communities of family farmers in semiarid regions is limited due to rudimentary cultivation practices and systems, water scarcity, and excess salts in the water and soil. Thus, the objective of this work was to evaluate the production of rocket (Eruca sativa L. cv. Folha Larga) in a low cost hydroponic system, considering strategies for the use of brackish water in the nutrient solution. The experiments were conducted in complete randomized designs, in 6×2 factorial arrangements, with five replications, using rocket plants grown in different nutrient solutions, consisting of six salinity levels (1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 dS m -1) and two circulation frequencies of the nutrient solution (twice a day, at 8:00h, and 16:00h; and three times a day, at 8:00h, 12:00h, and 16:00h). In Experiment I, the nutrient solution lost by evapotranspiration was replenished with the respective brackish water used in its preparation; and in Experiment II it was replenished with public water (0.12 dS m -1). The shoot and root fresh and dry biomass of the plants and their respective dry weight proportions, and biometric variables were evaluated. Replenishing of the nutrient solution with public water resulted in lower losses in biomass and plant growth. The increases in circulation frequency of the nutrient solution did not affect the biometric variables, however, the plants prioritized shoot biomass development to the detriment of the root when using high circulation frequencies.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2039
Author(s):  
Chuncheng Liu ◽  
Bingjian Cui ◽  
Ketema Tilahun Zeleke ◽  
Chao Hu ◽  
Haiqing Wu ◽  
...  

The use of unconventional water resources is an effective way to alleviate the scarcity of freshwater resources, especially in areas where freshwater is scarce, but reclaimed water is abundant. To explore the reasonable utilization of brackish water and reclaimed water, a pot experiment was carried out to study the risk of secondary soil salinization. The experiment set two salinity levels of brackish water, four mixed irrigation ratios of brackish water and reclaimed water, and freshwater irrigation as the control. The results showed that: (1) Soil moisture content, salt content, pH, ESP, and SAR decreased with the increase in the proportion of reclaimed water in the mixture. (2) Soil exchangeable Ca2+ content under mixed irrigation was higher than that of brackish water irrigation and reclaimed water irrigation. The content was especially significantly higher under the 1:2 mixed irrigation with brackish-reclaimed water. With the increase of the proportion of reclaimed water in the mixture, soil exchangeable Na+ content decreased, and a significant difference was found between treatments. The soil exchangeable K+ decreased at first and then increased, while the soil exchangeable Ca2+ increased at first and then decreased. The trend of the change of soil exchangeable Mg2+ content was similar to that of soil exchangeable Ca2+ content. (3) Based on the soil pH value, there was no risk of soil alkalization in all treatments. Based on ESP, ESP was less than 15% under freshwater irrigation, brackish (3 g/L)-reclaimed water 1:2 mixed irrigation, and reclaimed water irrigation, indicating no risk of alkalization. However, other treatments may cause soil alkalization. (4) At 3 g/L of brackish water, there was a salinization risk when the proportion of reclaimed water in the mixture was less than 1/2, but there was no salinization risk when the proportion was greater than 1/2. At 5 g/L of brackish water, there was a salinization risk under mixed irrigation. Therefore, the mixed irrigation of brackish water and reclaimed water had the risk of secondary soil salinization, and the appropriate salinity and mixing ratio should be selected.


2016 ◽  
Vol 29 (4) ◽  
pp. 966-975
Author(s):  
JOSÉ FRANCISCO DE CARVALHO ◽  
ÊNIO FARIAS DE FRANÇA E SILVA ◽  
GERÔNIMO FERREIRA DA SILVA ◽  
MÁRIO MONTEIRO ROLIM ◽  
ELVIRA MARIA REGIS PEDROSA

ABSTRACT The objective of this work was to evaluate the production components of cowpea (Vigna unguiculata L. Walp) subjected to irrigation with brackish water and different leaching fractions. The experiment was conducted in a lysimeter system of the Department of Agricultural Engineering of the Federal Rural University of Pernambuco, Recife campus. The treatments, consisting of two water salinity levels (ECw) (1.2 and 3.3 dS m-1) and five leaching fractions (0, 5, 10, 15 and 20%), were evaluated using a completely randomized design in a 2x5 factorial arrangement with four replications. The variables evaluated were: number of pods per plant, 100-grain weight, number of grains per pod, grain and shoot dry weight, grain yield and harvest index. The soil salinity increased with increasing salinity of the water used for irrigation, and reduced with increasing leaching fraction. The salinity of the water used for irrigation influenced only the variables number of pods per plant and grain yield. The estimated leaching fractions of 9.1% and 9.6% inhibited the damage caused by salinity on the number of pods per plant and grain yield, respectively. Therefore, the production of V. unguiculata irrigated with brackish water, leaching salts from the plant root environment, is possible under the conditions evaluated.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 696
Author(s):  
Reem H. Alzahib ◽  
Hussein M. Migdadi ◽  
Abdullah A. Al Ghamdi ◽  
Mona S. Alwahibi ◽  
Abdullah A. Ibrahim ◽  
...  

Understanding salt tolerance in tomato (Solanum lycopersicum L.) landraces will facilitate their use in genetic improvement. The study assessed the morpho-physiological variability of Hail tomato landraces in response to different salinity levels at seedling stages and recommended a tomato salt-tolerant landrace for future breeding programs. Three tomato landraces, Hail 548, Hail 747, and Hail 1072 were tested under three salinity levels: 75, 150, and 300 mM NaCl. Salinity stress reduced shoots’ fresh and dry weight by 71% and 72%, and roots were 86.5% and 78.6%, respectively. There was 22% reduced chlorophyll content, carotene content by 18.6%, and anthocyanin by 41.1%. Proline content increased for stressed treatments. The 300 mM NaCl treatment recorded the most proline content increases (67.37 mg/g fresh weight), with a percent increase in proline reaching 61.67% in Hail 747. Superoxide dismutase (SOD) activity decreased by 65% in Hail 548, while it relatively increased in Hail 747 and Hail 1072 treated with 300 mM NaCl. Catalase (CAT) activity was enhanced by salt stress in Hail 548 and recorded 7.6%, increasing at 75 and 5.1% at 300 mM NaCl. It revealed a reduction in malondialdehyde (MDA) at the 300 mM NaCl concentration in both Hail 548 and Hail 1072 landraces. Increasing salt concentrations showed a reduction in transpiration rate of 70.55%, 7.13% in stomatal conductance, and 72.34% in photosynthetic rate. K+/Na+ ratios decreased from 56% for 75 mM NaCl to 85% for 300 mM NaCl treatments in all genotypes. The response to salt stress in landraces involved some modifications in morphology, physiology, and metabolism. The landrace Hail 548 may have better protection against salt stress and observed protection against reactive oxygen species (ROS) by increasing enzymatic “antioxidants” activity under salt stress.


2016 ◽  
Vol 5 (2) ◽  
pp. 104
Author(s):  
Helale Bahrami ◽  
Amir Ostadi Jafari ◽  
Jamshid Razmjoo

<p class="emsd-body"><span lang="EN-GB">Seeds of ten sesame cultivars (Karaj, Darab, Safiabad, Jiroft, Borazjan, Yellow-white, Felestin, Ultan, Isfahan and Abpakhsh) were sown into soil filled pots in 2008 and 2009. Pots were watered with six levels of salts (0.0038 (tap water as control), 4.89, 8.61, 10.5, 14.54, 17.74 ds.m<sup>-1</sup> NaCl) until full maturity. Plant height, root and shoot dry weight, yield and yield components, seed oil and protein contents of cultivars were measured. Increasing salinity caused significant reduction in plant height, root and shoot dry weight, yield and yield components, seed oil and protein contents of all cultivars. However, there were significant differences among the cultivars for measured traits for each salinity level. Based on seed oil yield data, Safiabad and Kraj at 0.0038ds.m<sup>-1</sup>, Safiabad and Ultan at 4.89ds.m<sup>-1</sup>, Ultan, Safiabad and Darab at 8.61 salinity levels were the superior cultivars. High variability in tolerance to salinity among the tested sesame cultivars suggests that selection of more salt tolerant cultivars for planting or breeding purposes is possible.</span></p><p class="emsd-body"><span lang="EN-GB">Highlights</span></p><p class="emsd-body"><span lang="EN-GB">Effects of contrasting salinity levels (0.0038 (tap water as control), 4.89, 8.61, 10.5, 14.54, 17.74 ds.m<sup>-1</sup>NaCl) on sesame cultivars were tested. Salinity reduced plant growth and yield and seed oil and protein contents. However, there were significant differences among the cultivars for measured traits for each salinity level. </span></p>


2010 ◽  
Vol 39 (12) ◽  
pp. 2560-2568 ◽  
Author(s):  
Altevir Signor ◽  
Luiz Edivaldo Pezzato ◽  
Pedro de Magalhães Padilha ◽  
Carlos Roberto Padovani ◽  
Margarida Maria Barros

This research evaluated the influence of yeast and zinc on growth performance and metabolic responses of Nile tilapia. Diets were formulated to contain 32.0% digestible protein and 3,240 kcal DE/kg diet and the following autolized yeast (%):zinc (mg/kg)relationships: 0.0:0.0; 0.0:79.5; 2.0:0.0; 0.795:79.5; 2.0:200; 4.0:400; 6.0:600; 12.0:1,200 and 14.0:1,400. It was used 135 fingerlings (7.27 ± 0.19 g), distributed in a complete random design in 27 50-L aquaria and they were fed ad libitum four times a day for 128 days. It was evaluated growth performance and metabolic responses, weight gain, apparent feed conversion; protein efficiency and survival rate; percentage of protein, ether extract, dry weight and ashes in the muscle and in the bones; ammonia concentration and kinetic activity of alkaline phosphatase in the liver; ammonia, kinetic activity of alkaline phosphatase, urea and lipids in the plasma and; minerals in plasma, in the liver and in the bones of the fish. High levels of yeast and zinc in the diet impaired growth performance and metabolic responses of the fish. Autolized yeast at the level of 2.0% determines the best growth performance. Levels higher than 6.0% of autolized yeast and 600 mg zinc in the diets impair growth performance and lipid metabolism in fish and levels higher than 4.0% of autolized yeast and 400 mg zinc/kg in the diet impair mineral metabolism.


Agrikultura ◽  
2017 ◽  
Vol 28 (2) ◽  
Author(s):  
Mira Ariyanti ◽  
Gita Natali ◽  
Cucu Suherman

ABSTRACTThe growth response of oil palm (Elaeis Guineensis Jacq.) seedling toward the application of organic fertilizer from palm fronds and NPK compound fertilizerThe research was aimed to study the influence between organic fertilizers from palm fronds and NPK compound fertilizer to reduce NPK compound fertilizer in main nursery. The experiment was conducted from January to April 2017 at the Experiment Station Ciparanje, Faculty of Agriculture, Universitas Padjadjaran. The experimental design used was Randomized Block Design that arranged in factorial patterns with two factors and three replications. The fisrt factor was dosage of organic fertilizers from palm fronds consisted of three levels of 0 g/polybag, 800 g/polybag, and 1600 g/polybag and the second factor was dosage of NPK compound fertilizer consisted of four levels of 0 g/polybag, 20 g/polybag, 40 g/polybag, and 60 g/polybag. The result of the experiment showed that there was interaction effect between organic fertilizers from palm fronds and NPK compound fertilizer on height of seedling and dry weight of the shoot. The dosage of 1600 g/polybag organic fertilizers from palm fronds with the dosage of 20 g/polybag NPK compound fertilizer showed the best result in dry weight of the shoot.Keywords: Oil palm seedling, Main nursery, Organic fertilizer, Palm frond, NPK compound fertilizerABSTRAKPenelitian ini bertujuan untuk mengetahui pengaruh interaksi antara pupuk organik asal pelepah kelapa sawit dengan pupuk majemuk NPK yang baik untuk mengurangi penggunaan pupuk majemuk NPK di pembibitan utama kelapa sawit. Percobaan dilaksanakan dari bulan Januari sampai dengan April 2017 di Kebun Percobaan Ciparanje, Fakultas , Universitas Padjadjaran. Rancangan percobaan yang digunakan adalah Rancangan Acak Kelompok dengan pola faktorial yang diulang sebanyak tiga kali. Faktor pertama meliputi dosis pupuk organik asal pelepah kelapa sawit terdiri dari tiga taraf yaitu 0 g/polybag, 800 g/polybag, dan 1600 g/polybag dan faktor kedua dosis pupuk majemuk NPK yang terdiri empat taraf yaitu 0 g/polybag, 20 g/polybag, 40 g/polybag, dan 60 g/polybag. Hasil percobaan menunjukkan bahwa terdapat pengaruh interaksi pupuk organik asal pelepah kelapa sawit dengan pupuk majemuk NPK terhadap tinggi tanaman dan bobot kering tajuk. Perlakuan pupuk organik asal pelepah kelapa sawit 1600 g/bibit dengan pupuk majemuk NPK 20 g/bibit menghasilkan bobot kering tajuk bibit kelapa sawit terbaik.Kata Kunci: Bibit kelapa sawit, Pembibitan utama, Pupuk organik, Pelepah kelapa sawit, NPK


Sign in / Sign up

Export Citation Format

Share Document