scholarly journals Risk of Secondary Soil Salinization under Mixed Irrigation Using Brackish Water and Reclaimed Water

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2039
Author(s):  
Chuncheng Liu ◽  
Bingjian Cui ◽  
Ketema Tilahun Zeleke ◽  
Chao Hu ◽  
Haiqing Wu ◽  
...  

The use of unconventional water resources is an effective way to alleviate the scarcity of freshwater resources, especially in areas where freshwater is scarce, but reclaimed water is abundant. To explore the reasonable utilization of brackish water and reclaimed water, a pot experiment was carried out to study the risk of secondary soil salinization. The experiment set two salinity levels of brackish water, four mixed irrigation ratios of brackish water and reclaimed water, and freshwater irrigation as the control. The results showed that: (1) Soil moisture content, salt content, pH, ESP, and SAR decreased with the increase in the proportion of reclaimed water in the mixture. (2) Soil exchangeable Ca2+ content under mixed irrigation was higher than that of brackish water irrigation and reclaimed water irrigation. The content was especially significantly higher under the 1:2 mixed irrigation with brackish-reclaimed water. With the increase of the proportion of reclaimed water in the mixture, soil exchangeable Na+ content decreased, and a significant difference was found between treatments. The soil exchangeable K+ decreased at first and then increased, while the soil exchangeable Ca2+ increased at first and then decreased. The trend of the change of soil exchangeable Mg2+ content was similar to that of soil exchangeable Ca2+ content. (3) Based on the soil pH value, there was no risk of soil alkalization in all treatments. Based on ESP, ESP was less than 15% under freshwater irrigation, brackish (3 g/L)-reclaimed water 1:2 mixed irrigation, and reclaimed water irrigation, indicating no risk of alkalization. However, other treatments may cause soil alkalization. (4) At 3 g/L of brackish water, there was a salinization risk when the proportion of reclaimed water in the mixture was less than 1/2, but there was no salinization risk when the proportion was greater than 1/2. At 5 g/L of brackish water, there was a salinization risk under mixed irrigation. Therefore, the mixed irrigation of brackish water and reclaimed water had the risk of secondary soil salinization, and the appropriate salinity and mixing ratio should be selected.

2020 ◽  
pp. 1-14
Author(s):  
Alaa Ibrahim ◽  
Jamal Elfaki

A greenhouse experiment was carried out to evaluate the response of tomato (Solanum lycopersicum) to saline water irrigation under soilless and traditional techniques. A special fertigation technique with two different salinity levels (1 dS m-1 and 4 dS m-1) of water was used under different soilless media, namely, perlite, gravel, and pozzolana as inert media, in addition to traditional techniques. Results showed that among the three soilless substrates, perlite medium produced the highest total yields with larger fruit sizes. Furthermore, the perlite medium enabled significant savings in water, compared to gravel (-15%) and pozzolana (-20%). Moreover, the results corroborated the existing knowledge on the tolerance of tomato to brackish water irrigation, since there was no significant difference in yield of plants grown in the soil irrigated with water with salinity levels of 1.1   dSm-1 and 4-5  dS m-1. Plant biometric data revealed a better and quicker development of plants grown in the soilless media compared to those grown in the soil, even in the case of freshwater irrigation.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1548 ◽  
Author(s):  
Chenchen Wei ◽  
Fahu Li ◽  
Peiling Yang ◽  
Shumei Ren ◽  
Shuaijie Wang ◽  
...  

Brackish water has been widely used to irrigate crops to compensate for insufficient freshwater water supply for agricultural use. The goal of this research was to determine an efficient brackish water use method to increase irrigation efficiency and reduce N2O emission. To this end, we conducted a field experiment with four salinity levels of irrigation water (1.1, 2.0, 3.5, and 5.0 g·L−1 with drip irrigation) at Hetao Irrigation District (Inner Mongolia, China) in 2017 and 2018. The results show that irrigation with 3.5–5.0 g·L−1 water salinity increased the soil salinity compared with irrigation using 1.1–2.0 g·L−1 water salinity. The soil water content with 5.0 g·L−1 brackish water irrigation was significantly higher than with 1.1–3.5 g·L−1 water salinity due to the effect of salinity on crop water uptake. The overall soil pH increased with the increase in irrigation water salinity. Saturated soil hydraulic conductivity decreased with the increase in irrigation water salinity. These results indicate that brackish water irrigation aggravates the degree of soil salinization and alkalization. The soil N2O cumulative flux resulting from irrigation with 5.0 g·L−1 water salinity was 51.18–82.86% higher than that resulting from 1.1–3.5 g L−1 water salinity in 2017, and was 32.38–44.79% higher than that resulting from 1.1–2.0 g·L−1 in 2018. Irrigation with brackish water reduced maize yield, and the reduction in yield in 2018 was greater than that in 2017, but irrigation with 2.0 g·L−1 brackish water did not significantly reduce maize yield in 2017. These results suggest that reducing the salinity of irrigation water may effectively reduce soil N2O emission, alleviate the degree of soil salinization, and increase crop yield.


Author(s):  
Chuncheng Liu ◽  
Bingjian Cui ◽  
Chao Hu ◽  
Haiqing Wu ◽  
Feng Gao

Abstract To explore the effects of mixed irrigation on soil and crops, a pot experiment was conducted in two salinity levels of brackish water, four levels of mixed brackish-reclaimed water and freshwater irrigation as the control. The soil Na-Cl to Ca-SO4 contents changed, and activities of soil alkaline phosphatase and polyphenol oxidase changed, exhibiting a ‘V’-shaped curve with increasing the proportion of reclaimed water in the mixture. At the same brackish-reclaimed water level, there were no significant differences in alkaline phosphatase and polyphenol oxidase activities except for soil alkaline phosphatase activity decreasing significantly with the increase in salinity under brackish water irrigation. Mixed irrigation obviously improved superoxide dismutase activity but no significant influences on aboveground dry weight, underground biomass or crop physiological indexes (chlorophyll, soluble protein, malondialdehyde, peroxidase, catalase). Based on the integrated biological response index version 2 (IBRv2), the deviation of reclaimed water irrigation was the smallest, followed by 1:1 and 1:2 (3, 5 g/L brackish water salinities, respectively), with IBRv2 values of 7.94, 12.55 and 16.04. Therefore, considering the soil-crop characteristics, limited daily water amount and inadequate pipeline facilities for reclaimed water, the brackish-reclaimed water ratio should be 1:1 and 1:2 at 3, 5 g/L of brackish water, respectively.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 341 ◽  
Author(s):  
Peirong Lu ◽  
Zhanyu Zhang ◽  
Zhuping Sheng ◽  
Mingyi Huang ◽  
Zemin Zhang

Secondary salinization induced by brackish water irrigation has forced agricultural development to increasingly rely on soil management. A two-year field experiment was conducted to explore the effects of different straw incorporation rates (SIRs) within 0 to 20 cm topsoil on the soil water–salt balance, maize yield production, and water use efficiency (WUE) under brackish water irrigation in a naturally non-saline area. Air-dried wheat straw was applied at the rates of 0, 4.5, 9.0, 13.5, and 18.0 t ha−1 (R0–R4) and two salinity levels of irrigation water with the salt content of 1.92 dS m−1 (SL) and 3.20 dS m−1 (SH) were applied for simulating the scenarios of secondary salinization. Results demonstrated that straw incorporation markedly increased the soil water content during two growing seasons, and SIR was directly correlated to the deep percolation, but inversely correlated to the soil water depletion, under both the SL and SH condition. Meanwhile, straw incorporation led to the increase in salt content within the straw incorporation zone, but the total mass of salt deposited in the 0–100 cm soil profile was comparatively reduced as SIR increased due to the increased deep percolation for salt leaching, and such relative alleviation was more pronounced under the SH condition. The significantly increased maize yield and its corresponding WUE were obtained in treatments with high SIR levels. Additionally, an exponential function was used to describe the trend of the yield-increasing rate as SIR increased, and the theoretical maximum of grain and biomass yield calculated from the fitting results were 6483 in 17,282 kg ha−1 under SL, and 5440 and 14,501 kg ha−1 under SH, respectively. Results in this study would be helpful in the adoption of straw incorporation and brackish water irrigation in ways that facilitate soil water availability and reduce the risk of soil salinization.


Author(s):  
Saif A. Al-Khamisi ◽  
Malik Al-Wardy ◽  
Mushtaque Ahmed ◽  
Sanmugam A. Prathapar

Field studies were conducted at Agriculture Research Center, Oman during the year 2010/2011 to monitor the impact of reclaimed water irrigation on soil physical and chemical properties after wheat, cowpea and maize cultivation (in rotation). Three different water sources (Groundwater (GW), desalinized water (DW), and Reclaimed Water (RW)) were used as the treatments in Randomized Completely Block Design (RCBD) with 3 blocks (replicates). Samples were taken from four depths (30, 45, 60 and 90 cm) after harvesting time of the three crops. Soil salinity (ECe) in all soil depths decreased with time. Organic carbon did not show significant difference between harvest timings of wheat and cowpea. Organic carbon increased with time in soil irrigated with reclaimed water. The saturated hydraulic conductivity of the soil, Ksat didn’t show significant difference among the water types and their interaction with soil depths. Total nitrogen was the highest after cowpea harvest in reclaimed water irrigation. The soil phosphorus and potassium were not affected by any of the three water irrigation types. The highest concentrations of phosphorus and potassium were found to be in the upper soil layers. Overall, no adverse impacts of reclaimed water irrigation were observed after growing three crops of rotation. 


2021 ◽  
Author(s):  
Pei Liang ◽  
Xiao Jingan ◽  
Sun Liying

Abstract In this paper, the effects of irrigation with different water quality on the soil characteristics of 8 kinds of garden plants were analyzed. The results showed that soil pH (ranging at 7.76–8.73) had no significant difference in different soils compared with the contrast treatment. Under the reclaimed water irrigation, the content of soil total salinity, chloride ions and water soluble sodium in soil of most plants was averagely 160.3%, 83.3% and 67.5% higher than that of tap water, respectively. The influences of reclaimed water irrigation on soil nutrients were changed with the types of plants. The content of soil organic matter and the available potassium showed no significant differences in most plants. Compared with the tap water irrigation, the content of alkaline nitrogen in in 5 plants increased (averagely 25.8%) after 5-year irrigation with reclaimed water. In terms of soil microorganism, the increase of soil microbial population, including bacteria, fungus and Actinomycetes, has been promoted by different levels of reclaimed water irrigation, showing increasing trend with the increasing content of reclaimed water from 0%, 50–100%. Moreover, the number of bacteria and fugus is closely related with the content of soil organic matter, available potassium and effective phosphorus. However, the number of Actinomycetes is determined by the content of available potassium.


Author(s):  
Raveesha P ◽  
K. E. Prakash ◽  
B. T. Suresh Babu

The salt water mixes with fresh water and forms brackish water. The brackish water contains some quantity of salt, but not equal to sea water. Salinity determines the geographic distribution of the number of marshes found in estuary. Hence salinity is a very important environmental factor in estuary system. Sand is one major natural aggregate, required in construction industry mainly for the manufacture of concrete. The availability of good river sand is reduced due to salinity. The quality of sand available from estuarine regions is adversely affected due to this reason. It is the responsibility of engineers to check the quality of sand and its strength parameters before using it for any construction purpose. Presence of salt content in natural aggregates or manufactured aggregates is the cause for corrosion in steel. In this study the amount of salinity present in estuary sand was determined. Three different methods were used to determine the salinity in different seasonal variations. The sand sample collected nearer to the sea was found to be high in salinity in all methods.  It can be concluded that care should be taken before we use estuary sand as a construction material due to the presence of salinity.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 121
Author(s):  
Tize Xia ◽  
Lushuang Li ◽  
Bin Li ◽  
Peitong Dou ◽  
Hanqi Yang

The previous studies show soil microbes play a key role in the material and nutrient cycles in the forest ecosystem, but little is known about how soil microbes respond to plant distribution, especially in the soil bacterial community in woody bamboo forests. Cephalostachyum pingbianense (Hsueh & Y.M. Yang ex Yi et al.) D.Z. Li & H.Q. Yang, 2007 is known as the only bamboo species producing shoots all year round in natural conditions. Endemic to the Dawei mountain in Yunnan of China, this species is a good case to study how soil bacteria respond to plant endemic distribution. In this work, we assayed the soil chemical properties, enzyme activity, changes in the bacterial community along the distribution range of the C. pingbianense forest. The results showed that soil nutrients at the range edge were nitrogen-rich but phosphorus-deficient, and soil pH value and soil urease activity were significantly lower than that of the central range. No significant difference was detected in soil bacterial diversity, community composition, and function between the central and marginal range of C. pingbianense forest. Notably, the relative abundance of heterotrophy bacteria, such as Variibacter and Acidothermus, in the soil of the C. pingbianense forest was significantly higher than that of the outside range, which may lead to a higher soil organic carbon mineralization rate. These results imply that abundant heterotrophy bacteria were linked to the endemism and full-year shooting in C. pingbianense. Our study is amongst the first cases demonstrating the important role of heterotrophy bacteria in the distribution formation of endemic woody bamboos in special soil habitats, and provides insight into germplasm conservation and forest management in woody bamboos.


Sign in / Sign up

Export Citation Format

Share Document