scholarly journals Kinetics of diatrizoate degradation by ozone and the formation of disinfection by-products in the sequential chlorination

Author(s):  
Chen-Yan Hu ◽  
Si-Cheng Ren ◽  
Yi-Li Lin ◽  
Ji-Chen Zhang ◽  
Ye-Ye Zhu ◽  
...  

Abstract In this study, we studied the degradation kinetics of a common iodine contrast agent, diatrizoate, by ozone and the formation of disinfection by-products (DBPs) in the sequential chlorination. Effects of ozone concentration, solution pH, and bromide concentration on diatrizoate degradation were evaluated. The results indicate that diatrizoate can be effectively degraded (over 80% within 1 h) by ozone, and the degradation kinetics can be well described using the pseudo-first-order kinetic model. The pseudo-first-order rate constant (kobs) of diatrizoate degradation significantly increased with increasing ozone concentration and decreasing bromide concentration. The kobs kept increasing with the increase of pH value and reached a maximum of 6.5 (±0.05) × 10−2 min−1 at pH 9. As the ozone concentration gradually increased from 0.342 to 1.316 mg/L, the corresponding kobs of diatrizoate degradation increased from 1.76 (±0.20) × 10−3 to 4.22 (±0.3) × 10−2 min−1. The bromide concentration exhibited a strong inhibitory effect on diatrizoate degradation because of the competition for ozone with diatrizoate. Trichloromethane was the only detected DBP in the subsequent chlorination in the absence of bromide. However, in the presence of bromide, six other DBPs were detected, and bromochloroiodomethane and tribromomethane became the major products with concentrations 1–2 orders higher than those of the other DBPs. In order to provide safe drinking water to the public, water should be maintained at circumneutral pH values and low bromine concentrations (<5 μM) before reaching the chlorine disinfection process to effectively control the formation of DBPs.

2012 ◽  
Vol 65 (12) ◽  
pp. 2175-2182
Author(s):  
Abeer S. Elsherbiny ◽  
Sahar H. El-Khalafy ◽  
Michael P. Doyle

The kinetics of the oxidative degradation of an azo dye Metanil Yellow (MY) was investigated in aqueous solution using dirhodium(II) caprolactamate, Rh2(cap)4, as a catalyst in the presence of H2O2 as oxidizing agent. The reaction process was followed by UV/Vis spectrophotometer. The decolorization and degradation kinetics were investigated and both followed a pseudo-first-order kinetic with respect to the [MY]. The effects of various parameters such as H2O2 and dye concentrations, the amount of catalyst and temperature have been studied. The studies show that Rh2(cap)4 is a very effective catalyst for the formation of hydroxyl radicals HO• which oxidized and degraded about 92% of MY into CO2 and H2O after 24 h as measured by total carbon analyzer.


2012 ◽  
Vol 441 ◽  
pp. 549-554
Author(s):  
Ying Jie Cai ◽  
Xiao Jun Yang ◽  
Dong Sheng Xia ◽  
Qing Fu Zeng

Abstract. Degradation of reactive brilliant red X-3B (X-3B) by a UV/Mn2+/H2O2/micro- aeration method was investigated. The influencing factors of degradation of X-3B including UV irradiation, aeration, pH value, H2O2 concentration and X-3B concentration were examined. The results show that X-3B was effectively degraded by the UV/Mn2+/H2O2/micro-aeration method. The degradation rate of X-3B was obtained from weighted linear least squares analysis of the experimental data, and accorded with the pseudo-first order kinetics equation.


2012 ◽  
Vol 8 (3) ◽  
Author(s):  
Xiaoyan Dai ◽  
Chenhuan Yu ◽  
Qiaofeng Wu

Abstract Jiangpo is an increasingly popular East Asian spice which is made from Mangnolia officinalis bark and ginger juice. Since it induces bioactive compounds decomposition and has influence on final flavor and fragrance, cooking is regarded as the key operation in preparation of Jiangpo. To evaluate the bioactive compounds content changes of Jiangpo during thermal processing, kinetic parameters including reaction order, rate constant, T1/2 and activation energy of bioactive markers namely honokiol, magnolol and curcumin were determined. Cooking was set at temperatures 60, 90 and 120 °C for selected time intervals. Results displayed the thermal kinetic characteristics of the three compounds. Thermal degradation of Honokiol and magnolol both followed first order kinetic model and the loss of curcumin fitted second order. A mathematical model based on the obtained kinetic parameters has also been developed to predict the degradation of honokiol, magnolol and curcumin in non-isothermal state. All the information in this paper could contribute necessary information for optimizing the existing heat processing of Jiangpo.


1976 ◽  
Vol 31 (1-2) ◽  
pp. 29-39 ◽  
Author(s):  
Peter Rosenkranz ◽  
I. Basic Kinetics ◽  
Hartmut Schmidt

The kinetics of the photodynamic desactivation of lysozyme in presence of acridine orange as the sensitizer have been investigated in detail varying oxygen, protein, dye concentration, ionic strength and pH value. The kinetics can be approximately described as an over all pseudo-first- order rate process. Changing the solvent from water to D2O or by quenching experiments in pres­ence of azide ions it could be shown that the desactivation of lysozyme is caused exclusively by singlet oxygen. The excited oxygen occurs via the triplet state of the dye with a rate constant considerably lower than that to be expected for a diffusionally controlled reaction. Singlet oxygen reacts chemically (desactivation, k=2.9 × 107 ᴍ-1 sec-1) and physically (quenching process, k = 4.1 × 108 ᴍ-1sec-1) with the enzyme. The kinetical analysis shows that additional chemical reactions between singlet oxygen and lysozyme would have only little influence on the kinetics of the desactivation as long as their products would be enzymatically active and their kinetical constants would be less than about 1 × 108 ᴍ-1 sec-1.


1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.


Holzforschung ◽  
2006 ◽  
Vol 60 (2) ◽  
pp. 137-142 ◽  
Author(s):  
Zhi-Hua Jiang ◽  
Jean Bouchard ◽  
Richard Berry

Abstract The finding that hexenuronic acid (HexA) groups can be selectively removed from kraft pulps by acid hydrolysis has provided an opportunity to reduce bleaching chemicals. However, there is evidence that the acid hydrolysis is not uniform. In this report, we evaluate the kinetics of acid hydrolysis of HexA in a xylan sample enriched with HexA, a conventional kraft pulp, and three modified kraft pulps: anthraquinone pulp (Kraft-AQ), polysulfide pulp (PS), and polysulfide-anthraquinone pulp (PS-AQ). We found that HexA present in the xylan and conventional kraft pulp behaved similarly toward the acid hydrolysis throughout. On the other hand, HexA present in the Kraft-AQ, PS-AQ and PS pulps was heterogeneous toward acid hydrolysis and the reaction can be separated into two pseudo-first-order kinetic phases, each of which has a different rate constant. The kinetic data provide evidence for the formation of lignin-HexA-xylan complexes during modified kraft pulping processes.


1985 ◽  
Vol 63 (3) ◽  
pp. 663-666 ◽  
Author(s):  
Raj Narain Mehrotra

The kinetics of the oxidation of phenylphosphinic acid by quinquevalent vanadium ion have been investigated in aqueous perchlorate media under pseudo-first order conditions (phenylphosphinic acid in excess). The reaction has a first order dependence in [V(V)] and [phenylphosphinic acid] and the observed pseudo-first order rate constant kobs is given by kobs = a + b[H+].The acid-independent path is considered to be due to the reaction between VO2+ (aq.) and C6H5P:(OH)2, the active form of phenylphosphinic acid, while the reaction between V(OH)32+ (aq.) and C6H5P(O)(OH)H, the inactive form of phenylphosphinic acid, is considered to explain the acid-dependent path. Phenylphosphinic acid in aqueous acidic solution is known to exist as an equilibrium mixture of the active and inactive forms. The composite activation and thermodynamic parameters associated with the constants a and b are reported.


1993 ◽  
Vol 296 (1) ◽  
pp. 79-84 ◽  
Author(s):  
U Bandyopadhyay ◽  
D K Bhattacharyya ◽  
R K Banerjee

The mechanism of inhibition of gastric peroxidase (GPO) activity by mercaptomethylimidazole (MMI), an inducer of gastric acid secretion, has been investigated. Incubation of purified GPO with MMI in the presence of H2O2 results in irreversible inactivation of the enzyme. No significant inactivation occurs in the absence of H2O2 or MMI, suggesting the involvement of peroxidase-catalysed oxidized MMI (MMIOX.) in the inactivation process. The inactivation follows pseudo-first-order kinetics consistent with a mechanism-based (suicide) mode. The pseudo-first-order kinetic constants at pH 8 are ki = 111 microM, k(inact.) = 0.55 min-1 and t1/2 = 1.25 min, and the second-order rate constant is 0.53 x 10(4) M-1 x min-1. Propylthiouracil also inactivates GPO activity in the same manner but its efficiency (k(inact./ki = 0.46 mM-1 x min-1) is about 10 times lower than that of MMI (k(inact./ki = 5 mM-1 x min-1). The rate of inactivation with MMI shows pH-dependence with an inflection point at 7.3, indicating the involvement in the inactivation process of an ionizable group on the enzyme with a pKa of 7.3. The enzyme is remarkably protected against inactivation by micromolar concentrations of electron donors such as iodide and bromide but not by chloride. Although GPO oxidizes MMI slowly, iodide stimulates it through enzymic generation of I+ which is reduced back to I- by MMI. Although MMIOX. is formed at a much higher rate in the presence of I-, a constant concentration of I- maintained via the reduction of I+ by MMI, protects the active site of the enzyme against inactivation. We suggest that MMI inactivates catalytically active GPO by acting as a suicidal substrate.


2015 ◽  
Vol 71 (11) ◽  
pp. 1694-1700 ◽  
Author(s):  
ZiFang Chen ◽  
YongSheng Zhao ◽  
Qin Li

Gallic acid (GA) is a naturally occurring plant polyphenol compound. Experiments were conducted to study the kinetics and effects of pH, temperature, irradiation, and initial hexavalent chromium (Cr(VI)) concentration on Cr(VI) reduction by GA. Results indicated that Cr(VI) could be reduced to chromium oxide (Cr(III)) with GA in a wide range of pH values from 2.0 to 8.5. The reaction followed a pseudo-first-order kinetic model with respect to Cr(VI) and GA in acid conditions (pH 2.0–5.0). However, the reaction did not follow the pseudo-first-order kinetic model at pH 6.5 and 8.5. Removal efficiencies and reaction rate constants of Cr(VI) significantly increased with decreasing pH value and increasing temperature. The effect of irradiation on Cr(VI) reduction increased with increasing pH, and irradiation improved the removal efficiency of Cr(VI) by 11.29% at pH 6.5. At pH 2.0, nearly all molar ratios of GA required for the reduction of Cr(VI) were 1:2 (±0.1) under different initial Cr(VI) concentrations; however, the molar ratios of GA required for the reduction of Cr(VI) were 1:1.29, 1:1.43, and 1:1.69, respectively, when the initial Cr(VI) concentrations were 10, 25, and 50 mg/L at pH 5.5.


Sign in / Sign up

Export Citation Format

Share Document