Desorption behavior of ammonia nitrogen from sediment in cellar rainfall collection in a typical village in Northwest China

2017 ◽  
Vol 18 (5) ◽  
pp. 1775-1782
Author(s):  
Guo-zhen Zhang ◽  
Jia-hui Sun ◽  
Ya-ting Mu ◽  
Fu-ping Wu ◽  
Ke Ma ◽  
...  

Abstract The desorption behavior of ammonia nitrogen (NH3-N) in cellar sediment was studied to illustrate the influence of sediment on the quality of water in cellar rain collection. The impacts of three factors on the ability of cellar sediment to desorb NH3-N were analyzed, which include the concentration of the cellar sediment, temperature and the degree of disturbance. In addition, the isothermal balance and kinetics fitting were studied. The results show that sediment concentration, temperature, and the disturbance degree greatly affect the NH3-N desorption process. The pseudo-first-order and pseudo-second-order kinetics equations are suitable for describing the desorption process (R2 > 0.86) under the different conditions of cellar sediment concentration. The Langmuir isothermal model is more suitable for describing the equilibrium desorption of the different sediment concentrations than the Freundlich isothermal model. Ultimately, the NH3-N desorption process has a significant influence on cellar water quality. Such results could be a theoretical basis for collection, treatment, and maintenance of cellar water.

2021 ◽  
Author(s):  
Muhammad Yasir ◽  
Tomas Sopik ◽  
Lenka Lovecka ◽  
Dusan Kimmer ◽  
Vladimir Sedlarik

Abstract This study focuses on characterizing the adsorption kinetics of sex hormones (estrone, 17β-estradiol, 17α-ethinylestradiol, and estriol) on electrospun nanofibrous polymeric nanostructures based on cellulose acetate, polyamide, polyethersulfone, polyurethane, and polyacrylonitrile. The materials’ structure possessed fibers of average diameter in the range 174-330 nm, while its specific surface area equaled 10.2 to 20.9 m2/g. The adsorption-desorption process was investigated in four cycles to determine the reusability of the sorption systems. A one-step high-performance liquid chromatography technique was developed to detect concurrently each hormone present in the solution. Experimental data was applied to gauge adsorption kinetics with the aid of pseudo-first-order, pseudo-second-order, and intraparticle diffusion models; findings showed that estrone, estradiol, and ethinylestradiol followed pseudo-second-order kinetics, while estriol followed pseudo-first-order kinetics. It was observed that polyurethane had maximum adsorption capacities of 0.801, 0.590, 0.736, and 0.382 mg/g for estrone, 17β-estradiol, 17α-ethinylestradiol, and estriol, respectively. The results revealed that polyurethane had the highest percentage efficiency of estrogens removal at ~58.9% and lowest for polyacrylonitrile at ~35.1%. Consecutive adsorption-desorption cycles demonstrated that polyurethane maintained high efficiency, even after being used four times compared with the other polymers. The findings indicate the studied nanostructures have the potential to be effective sorbents for eradicating these estrogens concurrently from the environment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


2012 ◽  
Vol 14 (4) ◽  
pp. 88-94 ◽  
Author(s):  
R.P. Suresh Jeyakumar ◽  
V. Chandrasekaran

Abstract In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.


2021 ◽  
Author(s):  
khaled Mostafa ◽  
H. Ameen ◽  
A. Ebessy ◽  
A. El-Sanabary

Abstract Our recently tailored and fully characterized poly (AN)-starch nanoparticle graft copolymer having 60.1 G.Y. % was used as a starting substrate for copper ions removal from waste water effluent after chemical modification with hydroxyl amine via oximation reaction. This was done to change the abundant nitrile groups in the above copolymer into amidoxime one and the resultant poly (amidoxime) resin was used as adsorbent for copper ions. The resin was characterized qualitatively via rapid vanadium ion test and instrumentally by FT-IR spectra and SEM morphological analysis to confirm the presence of amidoxime groups. The adsorption capacity of the resin was done using the batch technique, whereas the residual copper ions content in the filtrate before and after adsorption was measured using atomic adsorption spectrometry. It was found that the maximum adsorption capacity of poly (amidoxime) resin was 115.2 mg/g at pH 7, 400ppm copper ions concentration and 0.25 g adsorbent at room temperature. The adsorption, kinetics and isothermal study of the process is scrutinized using different variables, such as pH, contact time, copper ion concentration and adsorbent dosage. Different kinetics models comprising the pseudo-first-order and pseudo-second-order have been applied to the experimental data to envisage the adsorption kinetics. It was found from kinetic study that pseudo-second-order rate equation was better than pseudo-first-order supporting the formation of chemisorption process. While, in case of isothermal study, the examination of calculated correlation coefficient (R2) values showed that the Langmuir model provide the best fit to experimental data than Freundlich one.


2020 ◽  
Vol 3 (6) ◽  
pp. 857-870
Author(s):  
Shagufta Zafar ◽  
Muhammad Imran Khan ◽  
Mushtaq Hussain Lashari ◽  
Majeda Khraisheh ◽  
Fares Almomani ◽  
...  

AbstractThe present study investigates the removal of copper ions (Cu (II)) from aqueous solution using chemically treated rice husk (TRH). The chemical treatment was carried out using NaOH solution and the effect of contact time (tc), adsorbent dosage (Dad), initial Cu (II) concentration ([Cu]i), and temperature (T) on the percentage removals of Cu (II) (%RCu) were investigated. Different analytical techniques (FTIR, SEM, and EDX) were used to confirm the adsorption (ads) of Cu (II) onto the TRH. The ads kinetics was tested against pseudo-first-order (PFO) and pseudo-second-order (PSO) models as well as Langmuir and Freundlich isotherms. Treating RH with NaOH altered the surface and functional groups, and on the surface of RH, the ionic ligands with high electro-attraction to Cu increased and thus improved the removal efficiency. The %RCu decreased by increasing the [Cu]i and increased by increasing the ct, Dad, and T. Up to 97% Cu removal was achieved in ct of 30 min using Dad of 0.3 g [Cu]i of 25 mg L−1 and T = 280 K. The ads of Cu on TRH is endothermic, spontaneous, follows Langmuir isotherms, and exhibited a PSO kinetics. Moreover, the TRH was successfully regenerated and used for further adsorption cycles using 1 M HNO3.


2020 ◽  
Vol 24 (2) ◽  
pp. 329-333
Author(s):  
D.O. Jalija ◽  
A . Uzairu

The objective of this study was to investigate the biosorption of Cu (II) and Ni (II) ions from aqueous solution by calcium alginate beads. The effects of solution pH, contact time and initial metal ion concentration were evaluated. The results showed that maximum Cu (II) removal (93.10%) occurred at pH of 9.0, contact time of 120 minutes and initial ion concentration of 10 mg/L while that of Ni (II) was 94.6%, which was achieved at pH of 8.0, contact time of 120 minutes and initial ion concentration of 10 mg/L. The equilibrium data fitted well to the Langmuir Isotherm indicating that the process is a monolayer adsorption. The coefficients of determination, R2, values for the Langmuir Isotherm were 0.9799 and 0.9822 respectively for Cu (II) and Ni (II) ions. The values of the maximum biosorption capacity, Qo, were 10.79 and 6.25 mgg-1 respectively. The kinetic data also revealed that the sorption process could best be described by the pseudo – second order kinetic model. The R2 values for the pseudo – second order kinetic plots for Cu (II) and Ni (II) were 0.9988 and 0.9969 respectively. These values were higher than those for the pseudo – first order plots. The values of the biosorption capacity qe obtained from the pseudo – second order plots were very close to the experimental values of qe indicating that the biosorption process follows the second order kinetics. This study has therefore shown that calcium alginate beads can be used for the removal of Cu (II) and Ni (II) ions from wastewaters. Keywords: Keywords: Adsorption, Calcium alginate, Isotherm, Langmuir, Pseudo- first order, Pseudo-second order


2019 ◽  
Vol 4 (12) ◽  
pp. 78-85
Author(s):  
Aboiyaa A. Ekine ◽  
Patience N. Ikenyiri ◽  
O. Hezekiah-Braye

This Research investigated the adsorption capacity of locally prepared adsorbents from Egg shells for the removal of fluoride ion in well water. It evaluated the performance of these adsorbents calcinated at 3000C and modified with 1.0M HNO3 (trioxonitrate (v)) acid. Batch adsorber was used to allow for interaction between adsorbent (grounded Egg shells) with water containing fluoride ion. The batch experiment was performed with particle size of 2.12 contact time (60, 120, 180, 240, 300min), mass dosage (5g, 10g, 15g, 20g) and temperature (250C, 300C, 400C, 500C). The modified adsorbent was characterized to determine the physiochemical properties of grounded Egg shells (GE). Also the chemical composition of the modified adsorbent was analyzed to determine the percentage of calcium element required for the uptake of the fluoride ions in water for calcium as 39.68% for grounded Egg shells (GE). Percentage adsorption increased with increase in contact time, mass dosage and temperature for the adsorbent. The adsorption capacity was also determined which also increased with increase in contact time, temperature but decreased with increase in mass dosage at constant time of 60minutes. The pseudo first-order, pseudo second order and intraparticle diffusion kinetic models were fitted into the experimental results. The results obtained indicated that the pseudo first order and intraparticle diffusion models for the grounded Egg shells (GE) reasonably described the adsorption process very well whereas the pseudo second order model was not suitable for a calcinations temperature of 3000C and particle size of 2.12m. The adsorption isotherms were obtained from equilibrium experiment Performed at temperature of 25, 35, 45 and 550C. The result showed that Langmuir and Freundlich isotherm fitted perfectly the experimental data. However, the negative values of Gibb’s free energy indicated that adsorption was favourable and the positive enthalpy change H0 revealed that adsorption process was endothermic while the positive value of the entropy change signified increased randomness with adsorption.


2020 ◽  
Vol 14 (4) ◽  
pp. 553-562
Author(s):  
Abhijit Jadhav ◽  
◽  
Govindaraj Mohanraj ◽  
Suseeladevi Mayadevi ◽  
Ashok Gokarn ◽  
...  

In this paper activated carbon is prepared from coconut leaves by chemical activation during slow pyrolysis at 673 K in an inert atmosphere. Activated carbon is prepared in the stiochiometric ratio of 1:1 (CL1), 2:1 (CL2) and 3:1 (CL3). Optimized 3:1 ratio is preferable for further study. BET surface area of CL3 activated carbon was found 1060.57 m2/g. It is greater than those of CL1 and CL2. The batch sorption study experiments were conducted with respect to solute concentration of 2.5–122.8 mg/l and solution temperature of 313–343 K. The Langmuir, Freundlich and Temkin isotherm studies were conducted. The experimental data fitted very well for the pseudo-first order and pseudo-second-order. The results have established good potentiality for the CL3 activated carbon to be used as a sorbent for the removal of lead from wastewater.


2021 ◽  
Author(s):  
Thi-Thuy Luu ◽  
Duy-Khoi Nguyen ◽  
Tu Thi Phuong Nguyen ◽  
Thien-Hoang Ho ◽  
Van-Phuc Dinh ◽  
...  

Abstract To remove Ni(II) ions from an aqueous solution, researchers used red mud modified by chitosan (RM/CS) material as a new adsorbent. According to the findings, the surface area of red mud is nearly doubled after being treated with chitosan, from 68.6 m2/g to 105.7 m2/g. The effects of pH solution, contact time, and material dosage on the Ni(II) uptake were examined. In comparison with the pseudo-first-order and pseudo-second-order models, the intra-diffusion model was the most suitable kinetic model for the Ni(II) removal. Besides, the three-parameter Sips model was used to predict the Ni(II) adsorption of RM/CS from aqueous solution. Furthermore, the Langmuir maximum Ni(II) uptake capacity of this material was 31.66 mg/g at 323K, which was higher than red mud and several other natural materials. Notably, thermodynamic investigations demonstrated that Ni(II) adsorption on RM/CS is both exothermic and physic.


Sign in / Sign up

Export Citation Format

Share Document