scholarly journals Approximate approach for improving pressure attenuation accuracy during hydraulic transients

Author(s):  
Chao Yu ◽  
Xiaodong Yu ◽  
Lei Zhang ◽  
Bhusan Neupane ◽  
Jian Zhang

Abstract The quasi-steady friction model is generally adopted in water hammer simulation in pipe network systems, which cannot accurately reflect the attenuation of pressure, while the existing unsteady friction model is challenging to use in complex pipe network systems. In this study, a convenient method for treating the friction term is proposed based on the Moody diagram. The attenuation process of water hammer pressure can be accurately reflected by reading the relationship curve between Reynolds number and the Darcy friction factor in the pipeline transient process. Combined with the classical water hammer experiment and the long pipe valve closing experiment in our laboratory, the accuracy of this model is verified, and the influence of absolute roughness (e) and Reynolds number (Re) on the model was analyzed as well. The results show that the pressure attenuation using the Method of Characteristics (MOC) and the proposed friction model has a good agreement with the experimental data. The absolute roughness has little influence on the results in hydraulically smooth pipe, while the minimum Reynolds number has a significant influence. When selecting the minimum Reynolds number, 2% ∼ 5% of the initial flow rate is recommended for calculation.

1997 ◽  
Vol 24 ◽  
pp. 181-185 ◽  
Author(s):  
Katsuhisa Kawashima ◽  
Tomomi Yamada

The densification of water-saturated firn, which had formed just above the firn-ice transition in the wet-snow zone of temperate glaciers, was investigated by compression tests under pressures ranging from 0.036 to 0.173 MPa, with special reference to the relationship between densification rate, time and pressure. At each test, the logarithm of the densification rate was proportional to the logarithm of the time, and its proportionality constant increased exponentially with increasing pressure. The time necessary for ice formation in the firn aquifer was calculated using the empirical formula obtained from the tests. Consequently, the necessary time decreased exponentially as the pressure increased, which shows that the transformation from firn in ice can be completed within the period when the firn aquifer exists, if the overburden pressure acting on the water-saturated firn is above 0.12–0.14 MPa. This critical value of pressure was in good agreement with the overburden pressure obtained from depth–density curves of temperate glaciers. It was concluded that the depth of firn–ice transition was self-balanced by the overburden pressure to result in the concentration between 20 and 30 m.


2015 ◽  
Vol 642 ◽  
pp. 8-12
Author(s):  
William W.F. Chong ◽  
Miguel de La Cruz

The paper introduces an alternative approach to predict boundary friction for rough surfaces at micros-scale through the empirical integration of asperity-like nanoscale friction measurements. The nanoscale friction is measured using an atomic force microscope (AFM) tip sliding on a steel plate, confining the test lubricant, i.e. base oil for the fully formulated SAE grade 10w40. The approach, based on the Greenwood and Tripp’s friction model, is combined with the modified Elrod’s cavitation algorithm in order to predict the friction generated by a slider-bearing test rig. The numerical simulation results, using an improved boundary friction model, showed good agreement with the measured friction data.


2011 ◽  
Vol 24 (6) ◽  
pp. 777-788 ◽  
Author(s):  
J.Z. Liang

The structure of the interlayer between matrix and inclusions affect directly the mechanical and physical properties of inorganic particulate-filled polymer composites. The interlayer thickness is an important parameter for characterization of the interfacial structure. The effects of the interlayer between the filler particles and matrix on the mechanical properties of polymer composites were analyzed in this article. On the basis of a simplified model of interlayer, an expression for estimating the interlayer thickness ([Formula: see text]) was proposed. In addition, the relationship between the [Formula: see text] and the particle size and its concentration was discussed. The results showed that the calculations of the [Formula: see text] and thickness/particle diameter ratio ([Formula: see text]) increased nonlinearly with an increase of the volume fraction of the inclusions. Moreover, the predictions of [Formula: see text] and the relevant data reported in literature were compared, and good agreement was found between them.


2015 ◽  
Vol 645-646 ◽  
pp. 70-74 ◽  
Author(s):  
Min Zhong ◽  
Yu Hang Zhao ◽  
Shou Mian Chen ◽  
Ming Li ◽  
Shao Hai Zeng ◽  
...  

An embedded SiGe layer was applied in the source/drain areas (S/D) of a field-effect transistor to boost the performance in the p channels. Raised SiGe S/D plays a critical role in strain engineering. In this study, the relationship between the SiGe overfilling and the enhancement of channel stress was investigated. Systematic technology computer aided design (TCAD) simulations of the SiGe overfill height in a 40 nm PMOS were performed. The simulation results indicate that a moderate SiGe overfilling induces the highest stress in the channel. Corresponding epitaxial growth experiments were done and the obtained experimental data was in good agreement with the simulation results. The effect of the SiGe overfilling is briefly discussed. The results and conclusions presented within this paper might serve as useful references for the optimization of the embedded SiGe stressor for 40 nm logic technology node and beyond.


2002 ◽  
Vol 124 (2) ◽  
pp. 492-499 ◽  
Author(s):  
Michael P. Schultz

An experimental investigation has been carried out to document and relate the frictional resistance and roughness texture of painted surfaces smoothed by sanding. Hydrodynamic tests were carried out in a towing tank using a flat plate test fixture towed at a Reynolds number ReL range of 2.8×106−5.5×106 based on the plate length and freestream velocity. Results indicate an increase in frictional resistance coefficient CF of up to 7.3% for an unsanded, as-sprayed paint surface compared to a sanded, polished surface. Significant increases in CF were also noted on surfaces sanded with sandpaper as fine as 600-grit as compared to the polished surface. The results show that, for the present surfaces, the centerline average height Ra is sufficient to explain a large majority of the variance in the roughness function ΔU+ in this Reynolds number range.


2014 ◽  
Author(s):  
Tao Chen ◽  
Ping Chen ◽  
Harry Montgomerie ◽  
Thomas Hagen ◽  
Ronald Benvie ◽  
...  

Abstract Turbulent flow, especially around chokes, downhole safety valves and inflow control devices, favors scale deposition potentially leading to severe loss of production. Recently, scale formation under turbulent conditions has been studied and progressed, focused on the bulk precipitation (SPE164070) and a small bore valve loop test (SPE 155428). However, bulk precipitation is not fully representative the surface deposition in the fields and the Reynolds number of modified loop is unknown. The relationship between a measured Reynolds number and surface deposition up until this study has not been addressed. A newly developed test methodology with rotating cylinder has been applied to generate high shear rate and evaluate surface deposition with Reynolds numbers up to ~41000. The relationship between Reynolds number and surface deposition is addressed. Using this highly representable test method for BaSO4 scale deposition, several different generic types of inhibitor chemistries, including polymers and phosphonates, were assessed under different levels of turbulence to evaluate their performance on surface deposition. The results showed it is not always true that higher turbulence results in higher dose of inhibitor being required to control scale. It is inhibitor chemistry and mechanisms dependent. The scale inhibitorscan be classified as three types when evaluating the trend of mass deposition versus Reynolds number and the morphology of the crystals deposited on the metal surface. ➢ Type 1: Crytal growth inhibitors. The mass of surface deposition increases with the increase of turbulence, along with smaller crystals.➢ Type 2: Dispersion and crystal growth inhibitor. The higher the turbulence, the less mass deposition, along with smaller crystals.➢ Type 3: Dispersion scale inhibitors. The higher the turbulence, the less mass deposition. The size of the crystals has no major change. This paper gives a comprehensive study of the effect of flow condition on the scale surface deposition and inhibition mechanisms. In addition, it details how this methodology and new environmentally acceptable inhibitor chemistry can be coupled to develop a chemical technology toolbox that also includes techniques for advanced scale inhibitor analysis and improved scale inhibitor retention, to design optimum scale squeeze packages for the harsh scaling conditions associated with turbulent flow conditions.


2017 ◽  
Vol 31 (20) ◽  
pp. 1750131 ◽  
Author(s):  
Ming-Min Zhong ◽  
Cheng Huang ◽  
Chun-Ling Tian

First-principles investigations are employed to provide a fundamental understanding of the structural features, phase stability, mechanical properties, Debye temperature, and hardness of manganese tetraboride. Eight candidate structures of known transition-metal tetraborides are chosen to probe. The calculated lattice parameters, elastic properties, Poisson’s ratio, and [Formula: see text] ratio are derived. It is observed that the monoclinic structure with [Formula: see text] symmetry (MnB4–MnB4) is the most stable in energy. The mechanical and thermodynamic stabilities of seven possible phases are confirmed by the calculated elastic constants and formation enthalpy. Moreover, the analysis on density of states demonstrates semiconducting behavior of MnB4–MnB4 and different metallic behaviors of other phases. The estimated hardness of MnB4–MnB4 is 38.3 GPa, which is in good agreement with experimental value. Furthermore, the relationship between hardness and Debye temperature is investigated and verifies that MnB4–MnB4 is a newly potential semiconducting ultrahard material with high melting point. It provides a new perspective of searching for semiconducting superhard materials to be applied in extreme conditions.


2004 ◽  
Vol 4 (3) ◽  
pp. 133-148 ◽  
Author(s):  
J.-H. Kim ◽  
C.-W. Baek ◽  
D.-J. Jo ◽  
E.-S. Kim ◽  
M.-J. Park

An optimal planning model for rehabilitation of water networks is presented. Capital costs (replacement, rehabilitation and repairing costs), benefits (by the reduction of pumping cost and leakage cost), and hydraulic reliability are used for making an optimal decision for the rehabilitation plan of a water pipe network. KYPIPE is used for checking the hydraulic reliability. A multi-objective optimization model is successfully developed in this study. And the task is tackled using a new meta-heuristic algorithm, Harmony Search, for solving a large optimization problem to which conventional optimization techniques are poorly suited. Five different models with different objective functions are developed and tested according to various conditions considered in this study. These models provide more options for the rehabilitation of pipe network systems compared to previously suggested models in the literature.


1995 ◽  
Vol 52 (4) ◽  
pp. 855-863 ◽  
Author(s):  
Peter Fritz Baker ◽  
Franklin K. Ligon ◽  
Terence P. Speed

Data from the U.S. Fish and Wildlife Service are used to investigate the relationship between water temperature and survival of hatchery-raised fall-run chinook salmon (Oncorhynchus tshawytscha) smolts migrating through the Sacramento – San Joaquin Delta of California. A formal statistical model is presented for the release of smolts marked with coded-wire tags (CWTs) in the lower Sacramento River and the subsequent recovery of marked smolts in midwater trawls in the Delta. This model treats survival as a logistic function of water temperature, and the release and recovery of different CWT groups as independent mark–recapture experiments. Iteratively reweighted least squares is used to fit the model to the data, and simulation is used to establish confidence intervals for the fitted parameters. A 95% confidence interval for the upper incipient lethal temperature, inferred from the trawl data by this method, is 23.01 ± 1.08 °C This is in good agreement with published experimental results obtained under controlled conditions (24.3 ± 0.1 and 25.1 ± 0.1 °C for chinook salmon acclimatized to 10 and 20 °C, respectively): this agreement has implications for the applicability of laboratory findings to natural systems.


Sign in / Sign up

Export Citation Format

Share Document