Landuse-based nonpoint source pollution. A threat to water resources in developing countries

1996 ◽  
Vol 33 (4-5) ◽  
pp. 53-61 ◽  
Author(s):  
Andrzej Tonderski

This article intends to raise some reflections on the increasing pollution from landuse-based nonpoint sources in developing countries. It is focused on historical development of agro-environmental factors such as deforestation, wetland transformation, monocultural crop production, agro-chemical inputs, concentrated animal production, and irrigation. It is shown that reduction of natural ecosystems in favour of agricultural land and intensification of the agricultural practices in developing countries continue on a larger scale and speed than in the industrialized countries. Some practices (e.g. the use of commercial fertilizers) show dramatic increases over last decades, others (e.g. deforestation) have increased at a steady rate over time. The major conclusion of this analysis is the necessity for urgent action of national and international communities on scientific and political level. If we do not focus our activities on controling pollution originating from landuse-based sources, developing countries will, in the near future, face dangerous deterioration of water resources with limited financial means to tackle the problem.

2021 ◽  
pp. bs202103
Author(s):  
Yachana Jha

Applications of synthetic chemical fertilizers and pesticides lead to several environmental hazards, causing damages to entire ecosystem. To reduce damage caused by such chemical inputs in agriculture and environment required a serious attention for replacement of chemicals input with eco-friendly options. In this study decaying macrophytes were selected as an option for organic agriculture, by analyzing its ability to provide important mineral nutrient to the maize crop grown in low nutrient soil as well as for providing resistant towards many common phyto-pathogens to enhance yield. The results of the study showed that decaying macrophytes have high concentration of stored important mineral nutrient in their body mass, which get released in the soil during its decay and to be used by the maize plant. The decaying macrophytes leaf extract have considerable amount of phenolic and flavonoids also having antimicrobial activity. The antimicrobial activity of the leaf extract has been analyzed against the common phyto-pathogen Pseudomonas aeruginosa , and S. aureus by agar disc method and the formation of clear zone indicate its potential as bio-control agent. So under intensive agricultural practices, application of such biological waste is of particular importance for enhancing soil fertility without chemical input, to ensure sustainable agriculture.


2021 ◽  
Author(s):  
Valeriy Osypov ◽  
Natalia Osadcha ◽  
Volodimir Osadchyi ◽  
Oleh Speka

<p>A river basin management plan has to consider climate change impact because global warming influences the water cycle explicitly. For Ukraine, only continental-scale studies or(and) global hydrological models reflect the climate change impact on water resources. Such resolution is insufficient to develop confident adaptation strategies.</p><p>This study aims to assess changes in the river runoff, water flow formation, and soil water of the Desna river basin under future climate. The Desna supply Kyiv, Ukraine’s capital, with fresh water. Moreover, soil water capacity across the basin is critical for crop production, the leading sector of the region.</p><p>The framework consists of the process-based ecohydrological SWAT (Soil and Water Assessment Tool) model and eight high-resolution (~12 km) regional climate models from the EURO-CORDEX project forced by RCP4.5 and RCP8.5 scenarios till the end of the XXI century. The SWAT model was successfully calibrated on water discharge from 12 gauges across the basin, then it was driven by each climate model to achieve a range of possible future scenarios. This approach better represents the hydrological processes and achieves more confident results than in previous studies.</p><p>Seven of eight models project warmer and wetter climate in the near future (2021-2050), and all models project the same in the far future (2071-2100). According to the ensemble mean, the air temperature will increase by 1.1°C under RCP4.5 and 1.2°C under RCP8.5 in the near future, and by 2.2°C under RCP4.5 and 4.2°C under RCP8.5 in the far future. Precipitation surplus will reach 5% (range from -6% to 16%) under RCP4.5 and RCP8.5 in the near future, and 8% (from 2% to 17%) under RCP4.5 and 14% (from 3% to 23%) under RCP8.5 in the far future. The discharge will likely increase (mean signal 6-8% in the near future and 10-14% in the far future) mostly due to higher groundwater inflow.</p><p>Intra-annual changes could be very unfavorable for plant growth because of lower soil water content and higher temperature stress during the vegetation period. The models agree about precipitation surplus during the cold period but, in summer, all directions of change are almost equally possible.</p><p>We consider that, among other vulnerabilities of the Desna basin, the water stress for crops will be the main issue because of the high dependence of the economy on crop production. Attention should also be paid to forest fires, eutrophication, and the concentration of organic substances in the stream</p>


Author(s):  
Phelipe Da Silva Anjinho ◽  
Allita Rezende dos Santos ◽  
Mariana Abibi Guimarães Araujo Barbosa ◽  
Frederico Fabio Mauad

The landscape transformation caused by economical activities generates impacts on natural ecosystems and the water system is one of the most susceptible to anthropic alterations. In this context, the objective of this study was to analyze the vulnerability of the water resources of the Lobo Stream Drainage Basin (LSDB), Itirapina-SP, through the application of the Environmental Quality Index of Water Resources (EQI-Hydro), in a 32 years period, corresponding to the years 1985 and 2017. The EQI-Hydro was calculated from the analysis of the Euclidean distance of the water resources to the impacting sources, determined by means of land use classification, and then rescaled based on fuzzy logic. The results show that approximately 57% of the watershed area is classified as high and very high EQI-Hydro. The Itaqueri River and the Água Branca Stream are the most vulnerable to pollution due to their proximity to pollution sources. This manifests the need for adequate agricultural practices and public policies for forest restoration, aiming the preservation of the LSDB water resources.


2020 ◽  
Author(s):  
Margaret S. Gumisiriza ◽  
Patrick A. Ndakidemi ◽  
Ernest R. Mbega

Agriculture is the economic back-borne of majority of developing countries worldwide. The sector employs over 50% of the working population and contributes about 33% of the Gross Domestic Product (GDP) in majority of African states. However, such contribution by the agricultural sector is likely to be affected by climate change, increasing human population and urbanization which impact on available agricultural land in various ways. There is thus an urgent need for developing countries to create or adopt technologies such as; soil-less farming that will not only address climate change challenges but also enhance crop production for improved food security. This paper reviews the science, origin, dynamics and farming systems under the soil-less agriculture precisely hydroponic farming to assist in widening the scope of knowledge of the hydroponic technologies and their implementation in Africa.


2019 ◽  
Vol 6 (1) ◽  
pp. 387-409 ◽  
Author(s):  
Roger A.C. Jones ◽  
Rayapati A. Naidu

Viral diseases provide a major challenge to twenty-first century agriculture worldwide. Climate change and human population pressures are driving rapid alterations in agricultural practices and cropping systems that favor destructive viral disease outbreaks. Such outbreaks are strikingly apparent in subsistence agriculture in food-insecure regions. Agricultural globalization and international trade are spreading viruses and their vectors to new geographical regions with unexpected consequences for food production and natural ecosystems. Due to the varying epidemiological characteristics of diverent viral pathosystems, there is no one-size-fits-all approach toward mitigating negative viral disease impacts on diverse agroecological production systems. Advances in scientific understanding of virus pathosystems, rapid technological innovation, innovative communication strategies, and global scientific networks provide opportunities to build epidemiologic intelligence of virus threats to crop production and global food security. A paradigm shift toward deploying integrated, smart, and eco-friendly strategies is required to advance virus disease management in diverse agricultural cropping systems.


2020 ◽  
Vol 9 (1) ◽  
pp. 97-118
Author(s):  
Thomas Reuter ◽  
Sarbjeet Singh ◽  
A. K. Sinha ◽  
Shalina Mehta

Agricultural dominant societies in India have slowly shifted from traditional agricultural practices to modern infrastructural development. The recent trend of developing high-tech cities is an effort by the Punjab government to bring additional investment to the state and boost its economy. But to do that at the expense of highly fertile agricultural land is a debatable proposition. One of the most recent ventures towards this objective is the kind of development being initiated in the vicinity of Chandigarh and Mohali by Greater Mohali Area Development Authority (GMADA)—an Aerocity Expansion project. This article will focus on Patton, Kurai and Seon—three out of 14 villages where 1,305 acres of land have been proposed to be acquired. This article explores blatant land grab practices by the state authority in the name of development, which act as barriers to the food security and threaten the livelihood of those whose land will be acquired in the near future. The study will further focus on people’s perception of the new development project initiated by GMADA.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1755 ◽  
Author(s):  
Ehsan Qasemipour ◽  
Ali Abbasi

Water challenges—especially in developing countries—are set to be strained by population explosion, growing technology, climate change and a shift in consumption pattern toward more water-intensive products. In these situations, water transfer in virtual form can play an important role in alleviating the pressure exerted on the limited water resources—especially in arid and semi-arid regions. This study aims to quantify the 10-year average of virtual water trade and the water footprint within South Khorasan—the third largest province in Iran—for both crops and livestock products. The virtual water content of 37 crops and five livestock is first estimated and the water footprint of each county is consequently measured using a top-down approach. The sustainability of the current agricultural productions is then assessed using the water scarcity (WS) indicator. Results of the study show that in spite of the aridity of the study area, eight out of 11 counties are net virtual water exporters. Birjand—the most populous county—is a net virtual water importer. The 10-year average water footprint of the region is measured as 2.341 Gm3 per year, which accounts for 2.28% of national water footprint. The region’s average per capita water footprint however, with 3486 m3, is 115% higher than the national ones. Crop production and livestock production are responsible for 82.16% and 17.84% of the total water footprint. The current intensive agricultural practices in such an arid region have resulted in a water scarcity of 206%—which is far beyond the sustainability criteria. This study gives the water authorities and decision-makers of the region a picture of how and where local water resources are used through the food trade network. The generated information can be applied by the regional policymakers to establish effective and applicable approaches to alleviate water scarcity, guarantee sustainable use of water supplies, and provide food security


2021 ◽  
Author(s):  
Muhammad Zeshan ◽  
Muhammad Shakeel

Abstract The demand for freshwater is growing rapidly in Pakistan due to rising agricultural cultivation and its intensification. In addition, the fast growing population in the country (almost 2% per annum) and industrial growth are also adding to the rising water demand in the country. Pakistan is expected to face severe water shortage in near future if suitable policy measures are not taken. Around 95% of the freshwater is used by agriculture in Pakistan while the rest is used by the industry and the private households. Therefore, this paper primarily focuses on the irrigation water and how its shortage is going to affect the economic structure of Pakistan. The irrigation water shortage is expected to increase the price of agricultural land temporarily while a permanent increase is expected in the market price of irrigation water. The irrigation water shortage has a direct and an indirect impact on the production of various crops, which ends up in reducing the crop production. Overall, the resulting GDP losses might reach around 3.11–11.07% till 2040 under different water shortage scenarios. Finally, our simulation results show that the welfare losses are expected to be around USD 3.5to 10.9 billion till 2030.


Author(s):  
Hasrat Arjjumend ◽  
Konstantia Koutouki ◽  
Olga Donets

The use of unsustainable levels of chemical fertilizers and plant protection chemicals has resulted in a steady decline in soil and crop productivity the world over. Soil biology has undergone irreversible damage, coupled with a high concentration of toxic chemical residues in plant tissues and human bodies. Agricultural practices must evolve to sustainably meet the growing global demand for food without irreversibly damaging soil. Microbial biocontrol agents have tremendous potential to bring sustainability to agriculture in a way that is safe for the environment. Biopesticides do not kill non-target insects, and biosafety is ensured because biopesticides act as antidotes and do not lead to chemical contamination in the soil. This article is part of a larger study conducted in Ukraine by researchers at the Université de Montréal with the support of Mitacs and Earth Alive Clean Technologies. The responses of farmers who use biofertilizers (“user farmers”) and those who do not (“non-user farmers”), along with the responses of manufacturers or suppliers of biofertilizers, and research and development (R&D) scientists are captured to demonstrate the advantages of applying microbial biopesticides to field crops. Participants reported a 15-30% increase in yields and crop production after the application of biopesticides. With the use of biopesticides, farmers cultivated better quality fruits, grains, and tubers with a longer shelf life. Moreover, while the risk of crop loss remains high (60-70%) with chemically grown crops, this risk is reduced to 33% on average if crops are grown using biopesticides. The findings indicate that a large proportion of farmers would prefer to use biopesticides if they are effective and high quality products. In this context, the quality and effectiveness of products is therefore very important. Despite their benefits to soil, human health, and ecosystems, biopesticides face significant challenges and competition vis-à-vis synthetic pesticides for a variety of reasons. Therefore, the development of biopesticides must overcome the problems of poor quality products, short shelf life, delayed action, high market costs, and legal/registration issues.


1991 ◽  
Vol 23 (1-3) ◽  
pp. 11-18
Author(s):  
Tamon Ishibashi

Recently, problems of water shortage are becoming global in both developed and developing countries. This is due to tremendous population increases and also urbanization and industrialization. In this paper, countermeasures for future water shortages are described.


Sign in / Sign up

Export Citation Format

Share Document