The fouling characterization and control in the high concentration PAC membrane bioreactor HCPAC-MBR

2005 ◽  
Vol 51 (6-7) ◽  
pp. 77-84 ◽  
Author(s):  
G.T. Seo ◽  
S.W. Jang ◽  
S.H. Lee ◽  
C.H. Yoon

This study focuses on the experimental investigation to identify the effect of PAC at high concentrations on the fouling of membranes. A pilot-scale experimental apparatus was installed at a water treatment plant located downstream of Nakdong river basin, Korea. Effluent of rapid sand filter was used as influent of the system, which consists of PAC bio-reactor, submerged membrane module (hollow fiber with pore size 0.1 μm) and air supply facility. PAC was dosed at 40 g/L initially and it was not replaced during the operation period. Suction type filtration was carried out at intervals of 12 min. suction and 3 min. idling. At the initial flux 0.36 m/d, the system could be operated stably for around 90 days at target trans-membrane pressure (TMP) of 40 kPa. Among total resistance of membrane filtration, cake and gel layer resistance, Rc+Rg, was the dominant fraction (more than 90% of the total) to increase the filtration pressure, which means that the filtration resistance could be controlled by the PAC cake layer and then irreversible membrane fouling could be prevented. Three minutes air backwashing every 3 days could extend the operation period to 127 days. Organics were analyzed in terms of molecular weight structure. The influent of the system consists of 15.0% and 74.4% of hydrophobic and hydrophilic natural organic matter (NOM), respectively. Hydrophobic and hydrophilic (electrostatic) interaction was the main factor on fouling of the membrane in the reactor. Hydrophobic fraction decreased slightly in the effluent, which means hydrophobic NOM removal in the reactor by adsorption. Organics accumulated in the membrane were extracted for analysis after a certain period of operation. The fraction of hydrophobic and hydrophilic organics was 41.4% and 38.9%, respectively. On the basis of the experimental results, the hydrophobic organics were the major materials causing the fouling of the membrane, which should be changed to other types of material.

2020 ◽  
Vol 55 (2) ◽  
pp. 198-208
Author(s):  
Zahra Vojdani ◽  
Beata Gorczyca

Abstract Membrane filtration is commonly applied to reduce dissolved organic carbon (DOC) to control the formation of trihalomethanes (THMs); however, high levels of DOC can cause severe fouling of reverse osmosis membranes. The integrated biological and reverse osmosis membrane (IBROM) process is a combination of biological filters and reverse osmosis membranes. The IBROM process claims to remove biodegradable dissolved organic carbon (BDOC), which apparently should result in reduced membrane fouling. The goal of this research was to conduct a preliminary investigation into the claims of the IBROM system, using water collected from the Herbert water treatment plant (Saskatchewan). The plant is utilizing the IBROM for the treatment of a dugout and groundwater blend (DOC of 17.5–22.7 mg/L). The results demonstrated that BDOC concentrations did not change significantly throughout the plant. Optimized laboratory-scale coagulation with polyaluminium chlorohydrate achieved 58% removal of BDOC. Oxidation with permanganate increased the concentration of BDOC (from 5.7 to 8.8 mg/L). Overall, BDOC was effectively removed by optimized coagulation rather than the IBROM system. Moreover, the results show an inverse relationship between BDOC and THMs formation potential (THMFP) in both coagulated and oxidized water. For all concentrations, more biodegradable DOC had less tendency to form THMs based on the lower THMFP.


2018 ◽  
Vol 19 (3) ◽  
pp. 855-863 ◽  
Author(s):  
T. Miyoshi ◽  
Y. Takahashi ◽  
T. Suzuki ◽  
R. Nitisoravut ◽  
C. Polprasert

Abstract This study investigated the performance of a hybrid membrane filtration system to produce industrial water from highly-colored surface water. The system consists of a membrane filtration process with appropriate pretreatments, including coagulation, pre-chlorination, and anion exchange (IE) process. The results of the pilot-scale experiments revealed that the hybrid system can produce treated water with color of around 5 Pt-Co, dissolved manganese concentration of no more than 0.05 mg/L, and a silt density index (SDI) of no more than 5 when sufficient coagulant and sodium hypochlorite were dosed. Although the IE process effectively reduced the color of the water, a moderate increase in the color of the IE effluent was observed when there was a significant increase in the color of the raw water. This resulted in a severe membrane fouling, which was likely to be attributed to the excess production of inorganic sludge associated with the increased coagulant dosage required to achieve sufficient reduction of color. Such severe membrane fouling can be controlled by optimising the backwashing and relaxation frequencies during the membrane filtration. These results indicate that the hybrid system proposed is a suitable technology for treating highly-colored surface water.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 545 ◽  
Author(s):  
Rathmalgodage Thejani Nilusha ◽  
Tuo Wang ◽  
Hongyan Wang ◽  
Dawei Yu ◽  
Junya Zhang ◽  
...  

The cost-effective and stable operation of an anaerobic ceramic membrane bioreactor (AnCMBR) depends on operational strategies to minimize membrane fouling. A novel strategy for backwashing, filtration and relaxation was optimized for stable operation of a side stream tubular AnCMBR treating domestic wastewater at the ambient temperature. Two in situ backwashing schemes (once a day at 60 s/day, and twice a day at 60 s × 2/day) maintaining 55 min filtration and 5 min relaxation as a constant were compared. A flux level over 70% of the initial membrane flux was stabilized by in situ permeate backwashing irrespective of its frequency. The in situ backwashing by permeate once a day was better for energy saving, stable membrane filtration and less permeate consumption. Ex situ chemical cleaning after 60 days’ operation was carried out using pure water, sodium hypochlorite (NaOCl), and citric acid as the order. The dominant cake layer was effectively reduced by in situ backwashing, and the major organic foulants were fulvic acid-like substances and humic acid-like substances. Proteobacteria, Firmucutes, Epsilonbacteria and Bacteroides were the major microbes attached to the ceramic membrane fouling layer which were effectively removed by NaOCl.


2004 ◽  
Vol 50 (12) ◽  
pp. 311-316 ◽  
Author(s):  
C. Laabs ◽  
G. Amy ◽  
M. Jekel

Wastewater treatment by low-pressure membrane filtration (MF and UF) is affected to a large extent by macromolecules and colloids. In order to investigate the influence of organic colloids on the membrane filtration process, colloids were isolated from a wastewater treatment plant effluent using a rotaryevaporation pre-concentration step followed by dialysis. Stirred cell tests were carried out using redissolved colloids, with and without additional glass fiber filtration. After constant pressure membrane filtration of 190 L/m2, the initial flux had declined by 50% for colloids > 6-8 kD (glass fiber filtered) with a hydrophilic MF membrane and for colloids >12-14 kD (glass fiber filtered) with a hydrophobic MF membrane. For the non-filtered colloidal solutions, the flux decline was even steeper with the flux being below 10% of the initial flux after 190 L/m2 were passed through the membranes. As with larger particles, colloids form a filtration cake layer on top of the membrane surface when used as isolates without prior filtration. This filtration cake is easily removed during backwashing. However, polysaccharides as a macromolecular component of the colloid isolate cause severe fouling by the formation of a gel layer on the membrane surface that is difficult to remove completely.


2019 ◽  
Vol 24 (1) ◽  
pp. 135-163
Author(s):  
Jader Martínez Girón ◽  
Jenny Vanessa Marín-Rivera ◽  
Mauricio Quintero-Angel

Population growth and urbanization pose a greater pressure for the treatment of drinking water. Additionally, different treatment units, such as decanters and filters, accumulate high concentrations of iron (Fe) and manganese (Mn), which in many cases can be discharged into the environment without any treatment when maintenance is performed. Therefore, this paper evaluates the effectiveness of vertical subsurface wetlands for Fe and Mn removal from wastewater in drinking water treatment plants, taking a pilot scale wetland with an ascending gravel bed with two types of plants: C. esculenta and P. australis in El Hormiguero (Cali, Colombia), as an example. The pilot system had three upstream vertical wetlands, two of them planted and the third one without a plant used as a control. The wetlands were arranged in parallel and each formed by three gravel beds of different diameter. The results showed no significant difference for the percentage of removal in the three wetlands for turbidity (98 %), Fe (90 %), dissolved Fe (97 %) and Mn (98 %). The dissolved oxygen presented a significant difference between the planted wetlands and the control. C. esculenta had the highest concentration of Fe in the root with (103.5 ± 20.8) µg/g ; while P. australis had the highest average of Fe concentrations in leaves and stem with (45.7 ± 24) µg/g and (41.4 ± 9.1) µg/g, respectively. It is concluded that subsurface wetlands can be an interesting alternative for wastewater treatment in the maintenance of drinking water treatment plants. However, more research is needed for the use of vegetation or some technologies for the removal or reduction of the pollutant load in wetlands, since each drinking water treatment plant will require a treatment system for wastewater, which in turn requires a wastewater treatment system as well.


2004 ◽  
Vol 50 (8) ◽  
pp. 81-87 ◽  
Author(s):  
G.T. Seo ◽  
C.D. Moon ◽  
S.W. Chang ◽  
S.H. Lee

A pilot scale experiment was conducted to evaluate the performance of a membrane bioreactor filled with high concentration powdered activated carbon. This hybrid system has great potential to substitute for existing GAC or O3/BAC processes in the drinking water treatment train. The system was installed at a water treatment plant located downstream of the Nakdong river basin, Korea. Effluent of rapid sand filter was used as influent of the system which consists of PAC bio-reactor, submerged MF membrane module and air supply facility. PAC concentration of 20 g/L was maintained at the beginning of the experiment and it was increased to 40 g/L. The PAC has not been changed during the operational periods. The membrane was a hollow fiber type with pore sizes of 0.1 and 0.4 µm. It was apparent that the high PAC concentration could prevent membrane fouling. 40 g/L PAC was more effective to reduce the filtration resistance than 20 g/L. At the flux of 0.36 m/d, TMP was maintained less than 40 kPa for about 3 months by intermittent suction type operation (12 min suction/3 min idling). Adsorption was the dominant role to remove DOC at the initial operational period. However the biological effect was gradually increased after around 3 months operation. Constant DOC removal could be maintained at about 40% without any trouble and then a tremendous reduction of DBPs (HAA5 and THM) higher than 85% was achieved. Full nitrification was observed at the controlled influent ammonia nitrogen concentration of 3 and 7 mg/L. pH was an important parameter to keep stable ammonia oxidation. From almost two years of operation, it is clear that the PAC membrane bioreactor is highly applicable for advanced water treatment under the recent situation of more stringent DBPs regulation in Korea.


2010 ◽  
Vol 10 (6) ◽  
pp. 961-968 ◽  
Author(s):  
J. E. Drewes ◽  
J. A. McDonald ◽  
T. Trinh ◽  
M. V. Storey ◽  
S. J. Khan

A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.


2017 ◽  
Vol 105 (5) ◽  
Author(s):  
Mohammed S. Aljohani

AbstractSilica scaling deposition in industrial water systems is one of the biggest challenges facing the water treatment industry due the low solubility of the scalants in the feed waters. In this preliminary work, we investigated the effectiveness of the ionizing radiation induced removal of silica in water sample from the Salbukh, Saudi Arabia, water treatment plant by using metallic iron as the source of ferric hydroxide to co-precipitate the silica. The influence of several reaction parameters, i.e. iron powder dosage, radiation dose, initial pH and equilibrium pH effect were investigated. In the optimum conditions, up to 75% of silica was removed. This preliminary study showed that this environmentally friendly process is effective in silica removal from underground water.


2006 ◽  
Vol 1 (4) ◽  
Author(s):  
N. Engelhardt ◽  
W. Lindner

With the commissioning of the waste water treatment plant Nordkanal, which has been dimensioned for a design capacity of 80,000 population equivalents, new worldwide standards for the implementation of large membrane-activated sludge plants have been created both from a technical and from an economic point of view. The hitherto successful operation of this plant has already now contributed towards this technology becoming suitable for use in large waste water treatment plants. The now two years the waste water treatment plant Nordkanal has been in operation have once again demonstrated that even on a large scale, membrane-activated sludge plants are able to reliably produce purified effluent of excellent quality, while simultaneously providing a small-sized design. They prove advantageous everywhere small-sized designs are sought after and the purified effluent has to meet high or special requirements. Wherever purification requirements are intensified in the foreseeable future, whether with regard to the hygienisation of effluent, or in the framework of re-using purified waste water as industrial water or potable water or in order to protect natural drinking water resources from critical anthropogenic impacts, the membrane bioreactor process or membrane filtration is trend setting and will increasingly gain in importance.


Sign in / Sign up

Export Citation Format

Share Document