Adsorption kinetics, isotherms and thermodynamics of atrazine removal using a banana peel based sorbent

2012 ◽  
Vol 65 (5) ◽  
pp. 940-947 ◽  
Author(s):  
Allen Chaparadza ◽  
Jeanne M. Hossenlopp

Atrazine removal from water by treated banana peels was studied. The effect of pH, contact time, initial atrazine concentration, and temperature were investigated. Batch experiments demonstrated that 15 g L−1 adsorbent dosage removed 90–99% of atrazine from 1–150 ppm aqueous solutions. The removal was both pH and temperature dependent with the most atrazine removed between pH 7 and 8.2 and increased with increasing temperature. Equilibrium data fitted well to the Langmuir and Redlich–Peterson models in the concentration and temperature ranges investigated, with a maximum adsorption capacity of 14 mg g−1. Simple mass transfer models were applied to the experimental data to examine the adsorption mechanism and it was found that both external mass transfer and intraparticle diffusion played important roles in the adsorption mechanisms. The enthalpy of atrazine adsorption was evaluated to be 67.8 ± 6.3 kJ mol−l with a Gibbs free energy of –5.7 ± 1.2 kJ mol−1.

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5436-5449
Author(s):  
Chao Cao ◽  
Lupeng Shao ◽  
Lucian A. Lucia ◽  
Yu Liu

Magnetic lignin-based adsorbent (MLA) was successfully fabricated to remove methyl orange dye from aqueous solution. The synthesized MLA was characterized by means of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). In the process of adsorption, influence factors and recycling performance were considered, and the adsorption mechanisms such as isotherm and kinetics were investigated. The result showed that the equilibrium data was consisted with the Langmuir model with a maximum adsorption capacity of 85.0 mg/g. The adsorption kinetics followed a pseudo-second-order model. Based the adsorption performance, MLA showed good recyclability. Therefore, these results demonstrate that MLA could offer a great potential as an efficient and reusable adsorbent in the wastewater treatments.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ > Cd2+ > Zn2+ > Cu2+ > Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 103
Author(s):  
Xiaoming Song ◽  
Yuewen Zhang ◽  
Nan Cao ◽  
Dong Sun ◽  
Zhipeng Zhang ◽  
...  

This study developed a nano-magnetite-modified biochar material (m-biochar) using a simple and rapid in situ synthesis method via microwave treatment, and systematically investigated the removal capability and mechanism of chromium (VI) by this m-biochar from contaminated groundwater. The m-biochar was fabricated from reed residues and magnetically modified by nano-Fe3O4. The results from scanning electron microscopy (SEM) and X-ray diffraction (XRD) characterisations confirmed the successful doping of nano-Fe3O4 on the biochar with an improved porous structure. The synthesised m-biochar exhibited significantly higher maximum adsorption capacity of 9.92 mg/g compared with that (8.03 mg/g) of the pristine biochar. The adsorption kinetics followed the pseudo-second-order model and the intraparticle diffusion model, which indicated that the overall adsorption rate of Cr(VI) was governed by the processes of chemical adsorption, liquid film diffusion and intramolecular diffusion. The increasing of the pH from 3 to 11 significantly affected the Cr(VI) adsorption, where the capabilities decreased from 9.92 mg/g to 0.435 mg/g and 8.03 mg/g to 0.095 mg/g for the m-biochar and pristine biochar, respectively. Moreover, the adsorption mechanisms of Cr(VI) by m-biochar were evaluated and confirmed to include the pathways of electrostatic adsorption, reduction and complexation. This study highlighted an effective synthesis method to prepare a superior Cr(VI) adsorbent, which could contribute to the effective remediation of heavy metal contaminations in the groundwater.


2021 ◽  
Vol 37 (2) ◽  
pp. 302-307
Author(s):  
Abdulrahman G. Alhamzan

In this study date pits of two types of date-palm trees (Phoenix Dactylifera L.), in Saudi Arabia were used as bio-sorbents for heavy metals (e.g. lead and copper) from aqueous solutions. Investigation of equilibrium time and the effect of different concentrations of metals were performed. Adsorption capacity of bio-sorbents increased when increasing concentration of metal ions. Maximum adsorption capacity at room temperature of Sukary date pits was 17.53 mg g-1 and 9.86 mg g-1 for lead and copper ions, respectively. Whereas, Khlass date pits showed maximum adsorption capacity at 14.1 mg g-1 and 7.91 mg g-1 for lead and copper ions, respectively at room temperature. Equilibrium isotherm models, (Langmuir and Freundlich models), were used for analysis of equilibrium experimental results. these models describe the experimental data well.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 652 ◽  
Author(s):  
George Z. Kyzas ◽  
Athanasios C. Mitropoulos

In the present study, activated carbons (PAC) were hydrothermally prepared with an environmental friendly preparation route after pyrolysis from biomass (specifically from agricultural (potato) peels). The prepared biochars were activated with potassium hydroxide (chemical activities). The preparation route had a strong impact on the pore structure of PAC. In addition, surface chemistry was also affected by the preparation and activation process. The adsorbent materials were also characterized by Scanning Electron Microscopy. The prepared activated carbons were used as adsorbents for the removal of lead ions. Batch experiments were performed to investigate the effect of physico-chemical parameters, such as pH, contact time, initial metal concentration and temperature. Equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb’s free energy (ΔG0) of adsorption systems were also determined and evaluated.


2018 ◽  
Vol 78 (8) ◽  
pp. 1693-1703 ◽  
Author(s):  
Jordana Georgin ◽  
Fernanda Caroline Drumm ◽  
Patrícia Grassi ◽  
Dison Franco ◽  
Daniel Allasia ◽  
...  

Abstract Araucaria angustifolia bark (AA-bark), a waste generated in wood processing, was evaluated as a potential adsorbent to remove Gentian Violet (GV) dye from aqueous solutions. The AA-bark presented an amorphous structure with irregular surface and was composed mainly of lignin and holocellulose. These characteristics indicated that the adsorbent contains available sites to accommodate the dye molecules. The GV adsorption on AA-bark was favored at pH 8.0 with adsorbent dosage of 0.80 g L−1. Pseudo-nth order model was adequate to represent the adsorption kinetics of GV on AA-bark. A fast adsorption rate was verified, with the equilibrium being attained within 30 min. Equilibrium data were well represented by the Langmuir model. The maximum adsorption capacity was 305.3 mg g−1. Adsorption was spontaneous, favorable and endothermic. AA-bark was able to treat a simulated dye house effluent, reaching color removal values of 80%. An excellent performance was found in fixed bed experiments, where the length of the mass transfer zone was only 5.38 cm and the breakthrough time was 138.5 h. AA-bark can be regenerated two times using HNO3 0.5 mol L−1. AA-bark can be used as a low-cost material to treat colored effluents in batch and fixed bed adsorption systems.


Geochronology ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 89-102
Author(s):  
Sean Jones ◽  
Andrew Gleadow ◽  
Barry Kohn

Abstract. A series of isochronal heating experiments were performed to constrain monazite fission track thermal annealing properties. The 252Cf fission tracks were implanted into monazite crystals from the Devonian Harcourt granodiorite (Victoria, Australia) on polished surfaces oriented parallel to (100) pinacoidal faces and perpendicular to the crystallographic c axis. Tracks were annealed over 1, 10, 100 and 1000 h schedules at temperatures between 30 and 400 ∘C. Track lengths were measured on captured digital image stacks and then converted to calculated mean lengths of equivalent confined fission tracks that progressively decreased with increasing temperature and time. Annealing is anisotropic, with tracks on surfaces perpendicular to the crystallographic c axis consistently annealing faster than those parallel to the (100) face. To investigate how the mean track lengths decreased as a function of annealing time and temperature, one parallel and two fanning models were fitted to the empirical dataset. The temperature limits of the monazite partial annealing zone (MPAZ) were defined as length reductions to 0.95 (lowest) and 0.5 (highest) for this study. Extrapolation of the laboratory experiments to geological timescales indicates that for a heating duration of 107 years, estimated temperature ranges of the MPAZ are −44 to 101 ∘C for the parallel model and −71 to 143 ∘C (both ±6–21 ∘C, 2 standard errors) for the best-fitting linear fanning model (T0=∞). If a monazite fission track closure temperature is approximated as the midpoint of the MPAZ, these results, for tracks with similar mass and energy distributions to those involved in spontaneous fission of 238U, are consistent with previously estimated closure temperatures (calculated from substantially higher energy particles) of < 50 ∘C and perhaps not much higher than ambient surface temperatures. Based on our findings we estimate that this closure temperature (Tc) for fission tracks in monazite ranges between ∼ 45 and 25 ∘C over geological timescales of 106–107 years, making this system potentially useful as an ultra-low-temperature thermochronometer.


Konversi ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 17
Author(s):  
Ari Susandy Sanjaya ◽  
Rizcy Paramita Agustine

Abstrak- Logam Pb merupakan salah satu pencemar lingkungan dan dapat mengakibatkan kematian atau gangguan kesehatan dalam waktu singkat. Salah satu cara untuk mengatasi masalah pencemaran Pb adalah dengan menggunakan arang aktif dari kulit pisang. Penelitian ini bertujuan untuk menentukan model kinetika yang sesuai pada proses adsorpsi Pb dengan melihat daya jerap arang aktif kulit pisang dalam berbagai variasi massa (1 g; 1,5g dan 2 g) dan waktu kontak (20 menit, 40 menit dan 60 menit). Analisa Kinetika didasarkan pada kinetika orde nol, orde satu dan orde dua serta menentukan kapasitas maksimum adsorpsi arang atif kulit pisang  terhadap logam Pb. Persamaan yang digunakan dalam proses adsorpsi adalah persamaan adsorpsi Isoterm Langmuir dan Freundlich. Dari hasil analisa, waktu optimum adsorbsi terjadi pada waktu 60 menit.  Kinetika adsorbsi logam Pb dengan arang aktif dari kulit pisang pada massa 1 dan 2 g mengikuti model kinetika orde 2, sedangkan pada massa 1,5 g mengikuti kinetika orde 0. Persamaan adsorpsi Langmuir lebih sesuai untuk isotherm adsorpsi pada penelitian ini. Adsorpsi Pb oleh kulit pisang yang sesuai dengan pola isotherm adsorpsi Langmuir mengindikasikan bahwa adsorpsi hanya berlangsung satu lapis (monolayer). Kapasitas adsorpsi maksimum ditunjukkan oleh nilai a yang besar, yaitu 1,4582 pada massa 1 g sedangkan kekuatan interaksi antara ion Pb2+ dengan kulit pisang terjadi pada massa 2 g yang ditunjukkan dengan nilai kL yang besarnya 0,409 Kata kunci : kinetika adsorpsi, arang aktif, kulit pisang, logam Pb  Abstract- Lead metal is one of environment polluter and can cause decease or health problems in sort time. The way to solve this problem is with used the carbon active from banana peel. This research is intend to find the kinetics model that appropriate in Pb adsorption process by knowing absorption of banana peel carbon active within mass variations (1; 1,5 and 2 g) and contact time (20, 40, and 60 minutes). Kinetics analysis are based from orde zero,one, and two and find the maximum capacity of adsorption from banana peel carbon active to lead metal. Equation which using at the adsorption process are Langmuir and Freundlich isotherm equations. From the analysis results, optimum time is at 60 minutes.kinetics of Pb absorption with carbon active from banana peel in mass 1 and 2 gr following kinetics model orde 2, then in mass 1,5 g following kinetics model orde 0. Langmuir equation is more appropriate in this research. Pb absorption from the banana peel that appropriate to Langmuir isotherm system is indicates adsorption was occur in one layer (monolayer). Maximum adsorption capacity is showing by the bigger value from a, that is 1,4582 in mass 1 g then interaction power of Pb with the banana peel was occur in mass 2 gr which showing with the value of kL is 0,4090.  Keywords : adsorption kinetics, carbon active, banana peel, Pb metal


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Bayram Kizilkaya ◽  
A. Adem Tekınay

Removal of lead (II) from aqueous solutions was studied by using pretreated fish bones as natural, cost-effective, waste sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacities of the adsorbent was investigated. The maximum adsorption capacity for Pb (II) was found to be 323 mg/g at optimum conditions. The experiments showed that when pH increased, an increase in the adsorbed amount of metal of the fish bones was observed. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of Pb (II) adsorption and the value ofRLfor Pb (II) was found to be 0.906. The thermodynamic parameters related to the adsorption process such asEa,ΔG°,ΔH°, andΔS° were calculated andEa,ΔH°, andΔS° were found to be 7.06, 46.01 kJ mol−1, and 0.141 kJ mol−1K−1for Pb (III), respectively.ΔH° values (46.01 kJmol−1) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to the experimental equilibrium data. The fish bones were effectively used as sorbent for the removal of Pb (II) ions from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document