Level and transport pattern of faecal coliform bacteria from tropical urban catchments

2013 ◽  
Vol 67 (8) ◽  
pp. 1822-1831 ◽  
Author(s):  
M. F. Chow ◽  
Z. Yusop ◽  
M. E. Toriman

Urbanization and frequent storms play important roles in increasing faecal bacteria pollution, especially for tropical urban catchments. However, only little information on the faecal bacteria levels from different land use types and the factors that influence bacteria concentrations is available. Thus, the objectives of this study were to quantify the levels and transport mechanism of faecal coliforms (FCs) from residential and commercial catchments. Stormwaters were sampled and the runoff flow rates were measured from both catchments during four storm events in Skudai, Malaysia. The samples were then analysed for FC, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS) and ammoniacal-nitrogen (NH3-N) concentrations. Intra-storm and inter-storm characteristics of FC bacteria were investigated in order to identify the level and transport pattern of FC. The commercial catchment showed significantly higher event mean concentration (EMC) of FC than the residential catchment. For the residential catchment, the highest bacterial concentrations occurred during the early part of stormwater runoff with peak concentrations usually preceding the peak flow. First flush effect was more prevalent at the residential catchment.

2011 ◽  
Vol 63 (6) ◽  
pp. 1211-1216 ◽  
Author(s):  
M. F. Chow ◽  
Z. Yusop ◽  
M. Mohamed

This paper examines the storm runoff quality from a commercial area in south Johor, Malaysia. Six storm events with a total of 68 storm runoff samples were analyzed. Event Mean Concentration (EMC) for all constituents analysed showed large inter-event variation. Site mean concentrations (SMC) for total suspended solids (TSS), oil and grease (O&G), biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), ammonia-nitrogen (NH3-N), total phosphorus (Total P) and Soluble P are 261, 4.31, 74, 192, 1.5, 0.006, 1.9, 1.12 and 0.38 mg/L, respectively. The SMCs at the studied site are higher than those reported in many urban catchments. The mean baseflow concentrations were higher than the EMCs for COD, Soluble P, NH3-N, NO3-N, Total P and NO2-N. However, the reverse was observed for TSS and O&G. All pollutants showed the occurrence of first flush phenomenon with the highest strength was observed for TSS, COD and NH3-N.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Zhang Wei ◽  
Li Simin ◽  
Tang Fengbing

To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.


2021 ◽  
Author(s):  
Hayley Popick ◽  
Markus Brinkmann ◽  
Kerry McPhedran

Abstract Background Stormwater is water resulting from precipitation events and snowmelt running off the urban landscape, collecting in storm sewers, and typically being released into receiving water bodies through outfalls with minimal to no treatment. Despite a growing body of evidence observing its deleterious pollution impacts, stormwater management and treatment in cold climates remains limited, partly due to a lack of quality and loading data and modelling parameters. This study examines the quality of stormwater discharging during the summer season in a cold-climate, semi-arid Canadian city (Saskatoon, Saskatchewan). Results Seven stormwater outfalls with mixed-land-use urban catchments >100 km2 were sampled for four summer (June-August 2019) storm events and analyzed for a suite of quality parameters, including total suspended solids (TSS), chemical oxygen demand (COD), dissolved organic carbon (DOC), metals, and targeted polyaromatic hydrocarbons (PAHs). In addition, assessment of stormwater toxicity was done using the two toxicity assays Raphidocelis subcapitata (algae) and Vibrio fischeri (bacteria). Notable single-event, single-outfall contaminant pulses included of arsenic (420 µg/L), cadmium (16.4 µg/L), zinc (924 µg/L), fluorene (4.95 µg/L), benzo[a]pyrene (0.949 µg/L), pyrene (0.934 µg/L), phenanthrene (1.39 µg/L), and anthracene (1.40 µg/L). The IC50 in both R. subcapitata and V. fischeri was observed, if at all, above expected toxicity thresholds for individual contaminant species. Conclusions In general, stormwater characteristics were similar to those of previous studies, with a bulk of contamination carried by the first volume of runoff, influenced by a combination of rainfall depth, antecedent dry period, land use, and activity within the catchment. Roads, highways, and industrial areas contribute the bulk of estimated contaminant loadings. More intensive sampling strategies are necessary to contextualize stormwater data in the context of contaminant and runoff volume peaks.


2012 ◽  
Vol 600 ◽  
pp. 43-46
Author(s):  
Ru Zhang ◽  
Kai Bin Feng ◽  
Jie Yang

This paper presents a study on the use of wetland as best management practices (BMPs) for controlling nonpoint source pollution located at Shenzhen and Qian Lake watershed at Nanchang in southern China. The Shenzhen experiments tested a construct wetland at the Xikeng Reservoir watershed, while the Nanchang experiments were conducted for treating stormwater on the campus of Nanchang University. Samples were collected during storm events and were analyzed for total suspended solids (TSS), biochemical oxygen demand (BOD5), ammonia nitrogen (NH3–N), and total phosphorus (TP). The removal efficiencies of both wetland systems were evaluated using the Efficiency Ratio (ER) method based on the event mean concentration (EMC) data. The wide range of performance results show that the average pollutants removal efficiencies of Qian Lake wetland are higher that Shenzhen wetland.


2013 ◽  
Vol 69 (2) ◽  
pp. 244-252 ◽  
Author(s):  
M. F. Chow ◽  
Z. Yusop

The characteristics of urban stormwater pollution in the tropics are still poorly understood. This issue is crucial to the tropical environment because its rainfall and runoff generation processes are so different from temperate regions. In this regard, a stormwater monitoring program was carried out at three urban catchments (e.g. residential, commercial and industrial) in the southern part of Peninsular Malaysia. A total of 51 storm events were collected at these three catchments. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand (COD), oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen (NH3-N), soluble reactive phosphorus and total phosphorus. Principal component analysis (PCA) and hierarchical cluster analysis were used to interpret the stormwater quality data for pattern recognition and identification of possible sources. The most likely sources of stormwater pollutants at the residential catchment were from surface soil and leachate of fertilizer from domestic lawns and gardens, whereas the most likely sources for the commercial catchment were from discharges of food waste and washing detergent. In the industrial catchment, the major sources of pollutants were discharges from workshops and factories. The PCA factors further revealed that COD and NH3-N were the major pollutants influencing the runoff quality in all three catchments.


1987 ◽  
Vol 19 (12) ◽  
pp. 265-271
Author(s):  
P. R. Thomas ◽  
H. O. Phelps

The investigation was based on two facultative stabilization ponds initially designed to operate in parallel, and now receive wastewater in excess of their capacities from a fast expanding housing estate in the Caribbean Island of Trinidad. Because of the deterioration of the effluent quality relative to acceptable standards, an attempt was made to upgrade the ponds using water hyacinths at the early stages. However, from the results, it was clear that the introduction of water hyacinths in the test pond did not lead to any substantial improvement in the effluent because of the high loading on the pond. Therefore the ponds were modified to operate in series with surface aerators installed in the first pond. Initially, the effluent quality was monitored in terms of total suspended solids, volatile suspended solids, biochemical oxygen demand, faecal coliform bacteria, pH and dissolved oxygen with aeration in the first pond and no aquatic plants in the second pond. Although there was a significant improvement in the effluent quality, the values remained above the standards. As a result, water hyacinths were introduced in the second pond and the effluent quality monitored together with aeration in the first pond. The effluent quality improved with total suspended solids and biochemical oxygen demand values both as low as 10 mg/l in certain months, but additional treatment was needed to reduce faecal conforms.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 509 ◽  
Author(s):  
Rosa Molina ◽  
Giorgio Manno ◽  
Carlo Lo Re ◽  
Giorgio Anfuso ◽  
Giuseppe Ciraolo

This paper investigates wave climate and storm characteristics along the Mediterranean coast of Andalusia, for the period 1979–2014, by means of the analysis of wave data on four prediction points obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF). Normally, to characterize storms, researchers use the so-called “power index”. In this paper, a different approach was adopted based on the assessment of the wave energy flux of each storm, using a robust definition of sea storm. During the investigated period, a total of 2961 storm events were recorded. They were classified by means of their associated energy flux into five classes, from low- (Class I) to high-energetic (Class V). Each point showed a different behavior in terms of energy, number, and duration of storms. Nine stormy years, i.e., years with a high cumulative energy, were recorded in 1980, 1983, 1990, 1992, 1995, 2001, 2008, 2010, and 2013.


2011 ◽  
Vol 63 (12) ◽  
pp. 2983-2991 ◽  
Author(s):  
M. Métadier ◽  
J. L. Bertrand-Krajewski

Continuous high resolution long term turbidity measurements along with continuous discharge measurements are now recognised as an appropriate technique for the estimation of in sewer total suspended solids (TSS) and Chemical Oxygen Demand (COD) loads during storm events. In the combined system of the Ecully urban catchment (Lyon, France), this technique is implemented since 2003, with more than 200 storm events monitored. This paper presents a method for the estimation of the dry weather (DW) contribution to measured total TSS and COD event loads with special attention devoted to uncertainties assessment. The method accounts for the dynamics of both discharge and turbidity time series at two minutes time step. The study is based on 180 DW days monitored in 2007–2008. Three distinct classes of DW days were evidenced. Variability analysis and quantification showed that no seasonal effect and no trend over the year were detectable. The law of propagation of uncertainties is applicable for uncertainties estimation. The method has then been applied to all measured storm events. This study confirms the interest of long term continuous discharge and turbidity time series in sewer systems, especially in the perspective of wet weather quality modelling.


2021 ◽  
Vol 13 (13) ◽  
pp. 7193
Author(s):  
Jiyeon Choi ◽  
Baekyung Park ◽  
Jinsun Kim ◽  
Soyoung Lee ◽  
Jichul Ryu ◽  
...  

This study aimed to estimate pollutant unit loads for different landuses and pollutants that reflected long-term runoff characteristics of nonpoint source (NPS) pollutants and recent environmental changes. During 2008–2014, 2026 rainfall events were monitored. The average values of antecedent dry days, total rainfall, rainfall intensity, rainfall duration, runoff duration, and runoff coefficient for each landuse were 3.8–5.9 d, 35.2–65.0 mm, 2.9–4.1 mm/h, 12.5–20.4 h, 12.4–27.9 h, and 0.24–0.45, respectively. Uplands (UL) exhibited high suspended solids (SS, 606.2 mg/L), total nitrogen (TN, 7.38 mg/L), and total phosphorous (TP, 2.27 mg/L) levels, whereas the runoff coefficient was high in the building sites (BS), with a high impervious surface ratio. The event mean concentration (EMC) for biological oxygen demand (BOD) was the highest in BS (8.0 mg/L), while the EMC was the highest in BS (in the rainfall range <10 mm) and UL and forest land (in the rainfall range >50 mm). The unit loads for BOD (1.49–17.76 kg/km2·d), TN (1.462–10.147 kg/km2·d), TP (0.094–1.435 kg/km2·d), and SS (15.20–327.70 kg/km2·d) were calculated. The findings can be used to manage NPS pollutants and watershed environments and implement relevant associated management systems.


2021 ◽  
Vol 9 (6) ◽  
pp. 660
Author(s):  
Sagi Knobler ◽  
Daniel Bar ◽  
Rotem Cohen ◽  
Dan Liberzon

There is a lack of scientific knowledge about the physical sea characteristics of the eastern part of the Mediterranean Sea. The current work offers a comprehensive view of wave fields in southern Israel waters covering a period between January 2017 and June 2018. The analyzed data were collected by a meteorological buoy providing wind and waves parameters. As expected for this area, the strongest storm events occurred throughout October–April. In this paper, we analyze the buoy data following two main objectives—identifying the most appropriate statistical distribution model and examining wave data in search of rogue wave presence. The objectives were accomplished by comparing a number of models suitable for deep seawater waves. The Tayfun—Fedele 3rd order model showed the best agreement with the tail of the empirical wave heights distribution. Examination of different statistical thresholds for the identification of rogue waves resulted in the detection of 99 unique waves, all of relatively low height, except for one wave that reached 12.2 m in height which was detected during a powerful January 2018 storm. Characteristics of the detected rogue waves were examined, revealing the majority of them presenting crest to trough symmetry. This finding calls for a reevaluation of the crest amplitude being equal to or above 1.25 the significant wave height threshold which assumes rogue waves carry most of their energy in the crest.


Sign in / Sign up

Export Citation Format

Share Document