Adsorption study of Ni(II) and Zn(II) by activated bone char residue

2013 ◽  
Vol 68 (8) ◽  
pp. 1837-1843
Author(s):  
Daniel de A. Soares ◽  
Araceli A. Seolatto ◽  
Taísa de M. Campos ◽  
Uaitã P. do Nascimento

A large part of the chemical industry sectors, particularly industrial surface treatments, contributes to the contamination of water bodies with heavy metals. The environmental laws have been stringent regarding discharge of effluents containing these compounds. This study evaluated the removal of metals Ni(II) and Zn(II) by adsorption on activated bone char residue. To evaluate the adsorption capacity, experiments were performed using kinetics in a monocomponent system and adsorption isotherms in monocomponent and bicomponent systems. The models used to fit the isotherms were the Langmuir and Freundlich.

1999 ◽  
Vol 40 (7) ◽  
pp. 109-116 ◽  
Author(s):  
M. H. Ansari ◽  
A. M. Deshkar ◽  
P. S. Kelkar ◽  
D. M. Dharmadhikari ◽  
M. Z. Hasan ◽  
...  

Steamed Hoof Powder (SHP), size < 53μ, was observed to have high adsorption capacity for Hg(II) with >95% removal from a solution containing 100 mg/L of Hg(II) with only 0.1% (W/V) concentration of SHP. The SHP has good settling properties and gives clear and odour free effluent. Studies indicate that pH values between 2 and 10 have no effect on the adsorption of Hg(II) on SHP. Light metal ions like Na+, K+, Ca2+ and Mg2+ up to concentrations of 500 mg/L and heavy metals like Cu2+, Zn2+, Cd2+, Co2+, Pb2+, Ni2+, Mn2+, Cr3+, Cr6+, Fe2+ and Fe3+ up to concentrations of 100 mg/L do not interfere with the adsorption process. Anions like sulphate, acetate and phosphate up to concentrations of 200 mg/L do not interfere. Chloride interferes in the adsorption process when Hg(II) concentration is above 9.7 mg/L. The adsorption equilibrium was established within two hours. Studies indicate that adsorption occurs on the surface sites of the adsorbent.


2021 ◽  
Vol 13 (15) ◽  
pp. 8552
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Maghfouri ◽  
Delaram Nourmohammadi ◽  
Pejman Azarsa ◽  
Rishi Gupta ◽  
...  

Clean water is a vital need for all living creatures during their lifespan. However, contaminated stormwater is a major issue around the globe. A wide range of contaminants, including heavy metals, organic and inorganic impurities, has been discovered in stormwater. Some commonly utilized methods, such as biological, physical and chemical procedures, have been considered to overcome these issues. However, these current approaches result in moderate to low contaminant removal efficiencies for certain classes of contaminants. Of late, filtration and adsorption processes have become more featured in permeable concretes (PCs) for the treatment of stormwater. As nanoparticles have vast potential and unique characterizations, such as a higher surface area to cure polluted stormwater, employing them to improve permeable concretes’ capabilities in stormwater treatment systems is an effective way to increase filtration and adsorption mechanisms. The present study reviews the removal rate of different stormwater contaminants such as heavy metals, organic and other pollutants using nanoparticle-improved PC. The application of different kinds of nanomaterials in PC as porous media to investigate their influences on the properties of PC, including the permeability rate, compressive strength, adsorption capacity and mix design of such concrete, was also studied. The findings of this review show that different types of nanomaterials improve the removal efficiency, compressive strength and adsorption capacity and decrease the infiltration rate of PC during the stormwater treatment process. With regard to the lack of comprehensive investigation concerning the use of nanomaterials in PC to treat polluted stormwater runoff, this study reviews 242 published articles on the removal rate of different stormwater contaminants by using PC improved with nanoparticles.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110236
Author(s):  
Gang Li ◽  
Jinli Zhang ◽  
Jia Liu ◽  
Tao Luo ◽  
Yu Xi

Pb(II) leakage from batteries, dyes, construction materials, and gasoline threaten human health and environmental safety, and suitable adsorption materials are vitally important for Pb(II) removal. Bone char is an outstanding adsorbent material for water treatment, and the effectiveness in Pb(II) removing need to be verified. In this paper, the transport characteristics of Pb(II) in columns filled with a sand and bone char mixture were studied at the laboratory scale, and the influences of the initial concentration, column height, inlet flow rate, and competing ion Cu(II) on Pb(II) adsorption and transport were analyzed. The Thomas and Dose-Response models were used to predict the test results, and the mechanisms of Pb(II) adsorption on bone char were investigated. The results showed that the adsorption capacity of the bone char increased with increasing column height and decreased with increasing initial Pb(II) concentration, flow rate, and Cu(II) concentration. The maximum adsorption capacity reached 38.466 mg/g and the saturation rate was 95.8% at an initial Pb(II) concentration of 200 mg/L, inlet flow rate of 4 mL/min, and column height of 30 cm. In the competitive binary system, the higher the Cu(II) concentration was, the greater the decreases in the breakthrough and termination times, and the faster the decrease in the Pb(II) adsorption capacity of the bone char. The predicted results of the Dose-Response model agreed well with the experimental results and were significantly better than those of the Thomas model. The main mechanisms of Pb(II) adsorption on bone char include a surface complexation reaction and the decomposition-replacement-precipitation of calcium hydroxyapatite (CaHA). Based on selectivity, sensitivity, and cost analyses, it can be concluded that bone char is a potential adsorbent for Pb(II)-containing wastewater treatment.


Author(s):  
Andrey N. Sharov

Based on the study of the spatio-temporal aspects of the development of phytoplankton in the lakes of the North and North-West of the European territory of Russia (large lakes – Imandra, Onega and Chudsko-Pskovskoye and small lakes of the Arctic and Subarctic), the features of its structure and dynamics under the influence of natural and anthropogenic factors (eutrophication, heavy metal pollution, acidification, thermification). The species composition and quantitative characteristics of phytoplankton of large lakes of the North of Russia, small arctic lakes and lakes of subarctic regions are studied. It has been shown that diatoms predominate in arctic water bodies according to species diversity, and green and diatoms predominate in boreal ones. By biomass, diatoms dominate mainly in all cold-water lakes, with the exception of small arctic lakes, where golden algae lead. The features of the reorganization of phytoplankton in response to the action of anthropogenic factors are revealed. It is proved that in the northern water bodies the complex action of heavy metals and nutrients does not lead to inhibition of phytoplankton, and the effect of acidification in combination with heavy metals enhances the toxic effect of the latter. A feature of the response to acidification is an increase in the variability of the dynamics of the biomass of phytoplankton. It has been shown that in different types of lakes of East Antarctica under severe climate conditions under light and biogenic limitation, redistribution of autotrophic components in the formation of the biota of water bodies occurs: against the background of a decrease in the abundance and diversity of phytoplankton, the role of microphytobenthos and periphyton increases.


2018 ◽  
Vol 11 ◽  
pp. 117862211881168 ◽  
Author(s):  
Christine Jeyaseelan ◽  
Nisha Chaudhary ◽  
Ravin Jugade

Dyes are a major cause of concern nowadays as large quantities are being released into water bodies causing pollution. In this article, modified chitosan (sulphate crosslinked) has been studied for the removal of Congo red (a benzidine-based anionic diazo dye) which is a toxic dye introduced into water bodies from textile industries. Sulphate-crosslinked chitosan (SCC) was prepared in the laboratory and the characterization of SCC was done by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Various parameters such as pH, contact time, adsorbent dosage, and concentration of adsorbent were optimized. The adsorption capacity was determined at pH 3.0, at which the percentage recovery was about 90% and followed Freundlich adsorption isotherm with an adsorption capacity of 91.8 mg/g. The adsorption followed pseudo-second-order kinetics. Various thermodynamic parameters were also determined for the change in adsorption with temperature. The SCC was regenerated with NaOH and showed good recycling capacity. The modified chitosan was applied for the removal of Congo red from industrial wastewater samples (spiked).


Author(s):  

The paper presents a new methodology for establishing regional water quality standards for the Upper Kama water bodies. Water bodies of the Upper Kama Basin are receiving wastewater from one of the largest industrial complexes of the Kama basin – Solikamsk-Berezniki industrial hub. The approach takes into account factors that determine the content of heavy metals in natural waters and the spatial/temporal variability of their content in the water bodies of the Upper Kama basin. The developed approach is implemented in establishment of regional water quality standards for the Upper Kama basin.


2020 ◽  
Vol 36 (6) ◽  
pp. 1154-1160
Author(s):  
G. DEEPA ◽  
M. JEYARAJ ◽  
P. N. Magudeswaran

On account of industrialization and increasing population, the water bodies get polluted by means of degradable and non-degradable substances. In 21st century, it is necessary to maintain a healthy environment especially water bodies for the survival of not the aquatic animals but also for healthy human life. Recent advances suggest that the issues related to water quality could be resolved by using nanoparticles and nano-filtration membrane methods from the development of nanotechnology. In this research, attempt to remove heavy metals from Chithrapuzha River water at Cochin bar mouth (S1) and Fact barge jetty (S2) using Fe2O3 prepared via green synthesis using Egg albumin and Aloe vera. Our results provoke that, the synthesis of Fe2O3 nanoparticle is cost-effective and eco-friendly and also good in nano-regime. Results of filtration studies showed that Fe2O3 nanoparticles remove heavy metals from Chithrapuzha River water and also increases the DO content which helps the survival of aquatic life.


2016 ◽  
Vol 18 (2) ◽  
pp. 437-443 ◽  

<div> <p>Adsorption is one of the methods that can be used for metal removal. In this study five metals were used cadmium, chromium, lead, copper and Nickel (Cd, Cr, Pb, Cu, and Ni) over a concentration range from 0.8 to about 7 mg l<sup>-1</sup> for each metal. Adsorbents were prepared with increasing chitosan to bentonite ratio from 0 to 0.67 g chitosan/g bentonite. The study showed that adsorption of metals on plain bentonite and chitosan modified bentonite can fit well with Langmuir and Freundlich adsorption isotherms. Furthermore, the bentonite adsorption capacity will decrease with the increase of chitosan/bentonite ratio. This study concluded that bentonite is a good adsorbent. However, the applicability of bentonite as potential adsorbent may be limited by its physical properties such as slow settling rate and difficulty to use it as an adsorbent in adsorption columns. Despite the decrease of maximum theoretical adsorption capacity as a result of chitosan modification, the addition of small amount of chitosan can improve the physical characteristics of bentonite clay to be used as an adsorbent.&nbsp;</p> </div> <p>&nbsp;</p>


Sign in / Sign up

Export Citation Format

Share Document