scholarly journals Removal of aqueous Cu2+ ions with Fe0/C ceramsites fabricated by direct reduction roasting of magnetite, coal, and paper mill sludge

2018 ◽  
Vol 78 (8) ◽  
pp. 1753-1761
Author(s):  
Pingfeng Fu ◽  
Zihao Chen ◽  
Tianwen Yang

Abstract The porous metallic iron/carbon (Fe0/C) ceramsites, with virtues of low cost and ‘green’ fabrication, were prepared by direct reduction roasting of magnetite, coal, and paper mill sludge. The X-ray diffraction data revealed that Fe0 was generated in situ by reducing the magnetite at 1,200 °C. Scanning electron microscopy with energy-dispersive X-ray spectroscopy indicated that Fe0 particles, with a size of <10 μm, were highly dispersed on carbon particles to form an integrated anode (Fe0) and cathode (C) structure of microelectrolysis filters. The effects of initial solution pH and Fe/C mass ratio on Cu2+ removal were investigated. The extent of Cu2+ removal increased from 93.53% to 99.81% as initial pH rose from 2.5 to 7.0. The residual Cu2+ concentration was as low as <0.2 mg/L. The highest extent of Cu2+ removal was achieved at Fe/C mass ratio of 6.8:1. The pseudo-second-order kinetic model fitted well for Cu2+ removal by the ceramsite, revealing the chemisorption as a limiting step. The Cu2+ adsorption equilibrium data were well described by the Langmuir isotherm, with a maximum adsorption capacity of 546.45 mg/g at initial pH 3.0.

2018 ◽  
Vol 69 (9) ◽  
pp. 2323-2330 ◽  
Author(s):  
Daniela C. Culita ◽  
Claudia Maria Simonescu ◽  
Rodica Elena Patescu ◽  
Nicolae Stanica

A series of three chitosan-based magnetic composites was prepared through a simple coprecipitation method. It was investigated the influence of mass ratio between chitosan and magnetite on the physical and chemical properties of the composites in order to establish the optimum conditions for obtaining a composite with good adsorption capacity for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions. It was found that the microspheres prepared using mass ratio chitosan / magnetite 1.25/1, having a saturation magnetization of 15 emu g--1, are the best to be used as adsorbent for the metal ions. The influence of different parameters such as initial pH values, contact time, initial concentration of metal ions, on the adsorption of Pb(II) and Cu(II) onto the chitosan-based magnetic adsorbent was investigated in details. The adsorption process fits the pseudo-second-order kinetic model in both mono and bicomponent systems, and the maximum adsorption capacities calculated on the basis of the Langmuir model were 79.4 mg g--1 for Pb(II) and 48.5 mg g--1 for Cu(II) in monocomponent systems, while in bicomponent systems were 88.3 and 49.5 mg g--1, respectively. The results revealed that the as prepared chitosan-based magnetic adsorbent can be an effective and promising adsorbent for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions.


2021 ◽  
Vol 13 (3) ◽  
pp. 371-380
Author(s):  
Yongjun Wu ◽  
Nina Xie ◽  
Lu Yu

A novel Ag–Si–TiO2 composite was prepared via sol–gel method for removing residual formaldehyde in shiitake mushroom. The structure of Ag–Si–TiO2 composite was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. Ultraviolet-visible absorption spectroscopy (UV-Vis) and N2 adsorption-desorption tests showed that Ag and Si co-doped decreased the band gap, the Brunauer-Emmett-Teller (BET) specific surface area of the samples increased and the recombination probability of electron-hole pairs (e--h+) reduced. Effect on removal rate of formaldehyde with different Ag-Si co-doped content, formaldehyde concentration and solution pH were investigated, and the results showed that 6.0 wt%Ag-3.0 wt%Si-TiO2 samples had an optimum catalytic performance, and the degradation efficiency reached 96.6% after 40 W 365 nm UV lamp irradiation for 360 min. The kinetics of formaldehyde degradation by Ag–Si–TiO2 composite photocatalyst could be described by Langmuir-Hinshelwood first-order kinetic model.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
America R. Vazquez-Olmos ◽  
Mohamed Abatal ◽  
Roberto Y. Sato-Berru ◽  
G. K. Pedraza-Basulto ◽  
Valentin Garcia-Vazquez ◽  
...  

Adsorption of Pb(II) from aqueous solution using MFe2O4 nanoferrites (M = Co, Ni, and Zn) was studied. Nanoferrite samples were prepared via the mechanochemical method and were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), micro-Raman, and vibrating sample magnetometry (VSM). XRD analysis confirms the formation of pure single phases of cubic ferrites with average crystallite sizes of 23.8, 19.4, and 19.2 nm for CoFe2O4, NiFe2O4, and ZnFe2O4, respectively. Only NiFe2O4 and ZnFe2O4 samples show superparamagnetic behavior at room temperature, whereas CoFe2O4 is ferromagnetic. Kinetics and isotherm adsorption studies for adsorption of Pb(II) were carried out. A pseudo-second-order kinetic describes the sorption behavior. The experimental data of the isotherms were well fitted to the Langmuir isotherm model. The maximum adsorption capacity of Pb(II) on the nanoferrites was found to be 20.58, 17.76, and 9.34 mg·g−1 for M = Co, Ni, and Zn, respectively.


2013 ◽  
Vol 68 (7) ◽  
pp. 1550-1555 ◽  
Author(s):  
Meral Yilmaz Cankilic ◽  
R. Bengu Karabacak ◽  
Turgay Tay ◽  
Merih Kivanc

This study reports kinetics and equilibrium of lead sorption onto the biomass of Enterococcus faecium. E. faecium is a lactic acid bacterium and was isolated from meat. Batch experiments were carried out to analyze the effects of the initial lead concentration, initial pH of the medium, agitation time and temperature on the biosorption. The lead sorption was found to increase with the increase in the solution pH, reaching a plateau value beyond pH 5, and the most favorable pH for removal was determined as 5.0. The highest lead uptake capacity of the biomass was obtained at the initial lead concentration of 300 mg L–1. The Langmuir and Freundlich adsorption models were applied to determine the biosorption isotherm, and the equilibrium data correlated well with the Langmuir model. The pseudo-second-order kinetic model was more suitable to fit the experimental data. The results were promising that the biomass of this lactic acid bacterium can be successfully used as a convenient adsorbent for lead removal from aqueous solutions.


1997 ◽  
Vol 35 (7) ◽  
pp. 205-211 ◽  
Author(s):  
R. Leyva-Ramos ◽  
J. R. Rangel-Mendez ◽  
J. Mendoza-Barron ◽  
L. Fuentes-Rubio ◽  
R. M. Guerrero-Coronado

The adsorption isotherm of cadmium on activated carbon was measured in a batch adsorber. Effects of temperature and solution pH on the adsorption isotherm were investigated by determining the adsorption isotherm at temperatures of 10, 25, and 40°C and at initial pH values from 2 to 8. Langmuir isotherm better fitted the experimental data since the average percent deviation was lower than with the Freundlich isotherm It was noticed that the amount of Cd2+ adsorbed was reduced about 3 times by increasing the temperature from 10 to 40°C. It was found that Cd2+ was not adsorbed on activated carbon at pH of 2 or lower and that Cd2+ was precipitated out as Cd(OH)2 at pH values above 9. Maximum adsorption capacity was observed at pH of 8 and the adsorption capacity was decreased about 12 times by reducing the initial pH from 8 to 3. According to the cadmium speciation diagram the predominant species below pH of 8 is Cd2+. Thus, cadmium was adsorbed on the activated carbon surface as Cd2+. It was concluded that the adsorption capacity is a strong function of pH and temperature.


2015 ◽  
Vol 737 ◽  
pp. 537-540
Author(s):  
Yan Wei Guo ◽  
Hua Zhang ◽  
Zhi Liang Zhu

A novel Mg/Fe/Ce layered double hydroxide (LDHs) and its calcined product (CLDH) were synthesized and CLDH was used as adsorbents for the removal of chlorate ions. Results showed that the initial solution pH was an important factor influencing the chlorate adsorption. The adsorption behavior of chlorate followed the Langmuir adsorption isotherm with a maximum adsorption capacity of 18.2 mg/g. The adsorption kinetics of chlorate on CLDH can be described by the pseudo-second-order kinetic model. It was concluded that the CLDH material is a potential adsorbent for the purification of polluted water with chlorate.


Author(s):  
Redouane Ouafi ◽  
Anass Omor ◽  
Younes Gaga ◽  
Mohamed Akhazzane ◽  
Mustapha Taleb ◽  
...  

This research investigates the adsorption potential of pine cones powder (PCP) for the removal of copper ions (Cu(II)) from aqueous solutions. The process of adsorption was reasonably fast to be completed within a time of 60 min. The pseudo-second order kinetic model describes properly the Cu(II) adsorption by PCP. The adsorbent was characterised by various instrumental techniques and batch experiments were conducted to investigate the effect of PCP dose, solution pH, particle size and initial Cu(II) concentration on adsorption efficiency. Optimum Cu(II) removal occurred at a slightly acidic pH, with a particle size less than 100 ?m. The effective PCP dose was estimated to be 36 g.L-1. The increase in the initial concentration of Cu (II) was accompanied by a reduction in the rate of its reduction by almost half. The Langmuir model was the best fitting isotherm with a maximum adsorption capacity of 9.08 mg.g-1. The thermodynamic parameters values showed that the Cu(II) adsorption was a spontaneous and endothermic process. The results of this research suggest that Cu(II) could be removed through an environmentally friendly process using PCP as low-cost natural wastes.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3054
Author(s):  
Yiming Zhou ◽  
Te Li ◽  
Juanli Shen ◽  
Yu Meng ◽  
Shuhua Tong ◽  
...  

This article reports effective removal of methylene blue (MB) dyes from aqueous solutions using a novel magnetic polymer nanocomposite. The core-shell structured nanosorbents was fabricated via coating Fe3O4 nanoparticles with a layer of hydrogel material, that synthesized by carboxymethyl cellulose cross-linked with poly(acrylic acid-co-acrylamide). Some physico-chemical properties of the nanosorbents were characterized by various testing methods. The nanosorbent could be easily separated from aqueous solutions by an external magnetic field and the mass fraction of outer hydrogel shell was 20.3 wt%. The adsorption performance was investigated as the effects of solution pH, adsorbent content, initial dye concentration, and contact time. The maximum adsorption capacity was obtained at neutral pH of 7 with a sorbent dose of 1.5 g L−1. The experimental data of MB adsorption were fit to Langmuir isotherm model and Pseudo-second-order kinetic model with maximum adsorption of 34.3 mg g−1. XPS technique was applied to study the mechanism of adsorption, electrostatic attraction and physically adsorption may control the adsorption behavior of the composite nanosorbents. In addition, a good reusability of 83.5% MB recovering with adsorption capacity decreasing by 16.5% over five cycles of sorption/desorption was observed.


Author(s):  
Fernando Murga ◽  
José de Campos ◽  
Roberta Signini

In this study, an aluminosilicate residue from insulators of high voltage transformers was used for the adsorption of basic dyes. The absorbent was characterized by X-ray fluorescence analysis, X-ray diffraction analysis, scanning electron microscopy, multimolecular adsorption theory (Branauer-Emmet-Teller (BET)) and determination of the point of zero charge (pHPZC). The effect of solution pH and adsorbent mass, the kinetic and thermodynamic behavior at different temperatures and the application of non-linear isotherm models of Langmuir, Freundlich, Temkin and Dubinin-Radushevich were investigated. The pHPZC value for the aluminosilicate was 3.7. The best conditions for adsorption of methylene blue and crystal violet dyes were pH 8.0 and adsorbent mass of 1100 mg in 25 mL. The best fit for the experimental data was obtained applying the pseudo-second-order kinetic model, with an equilibrium time of 480 to 720 min, and the activation energy suggests a physical adsorption mechanism. Isothermal parameters suggest a heterogeneous, favorable and predominantly physical surface adsorption. The thermodynamic studies indicated that the adsorption process is not spontaneous and is exothermic and the Gibbs energy values (ΔGº) suggest physisorption.


Sign in / Sign up

Export Citation Format

Share Document