scholarly journals 50 years of design and operation of large wastewater treatment plant conferences. A history of innovation and development

Author(s):  
H. Kroiss ◽  
N. Matsché ◽  
J. Krampe ◽  
Vanessa Parravicini

Abstract Large wastewater treatment plants (>50,000 population equivalents) treat more than 80% of the wastewater treated on a global scale, today it might be even >90%. They therefore provide the most relevant contribution to water protection from urban and industrial wastewater. This was already the case in 1971 when academics realised that progress in the scientific community alone will not succeed in a rapid transfer of research results to practitioners in design and operation of these plants. At the same time, it was recognised that urgent problems in practice are not recognised early enough by the globally networking scientific community. The most effective means of solving these problems was the creation of a new forum where experts from both sides meet. Scientists normally create their special conferences and workshops to enhance global co-operation in their specific field of research and development. This is reflected in the existence of many IWA Specialist Groups (SG) with global representation. The IWA Large Wastewater Treatment Plants (LWWTP) events and the formation of the LWWTP Specialist Group have been the first to take care of a complex technology for water protection, where specialists from most of other SGs can meet and discuss together with the practitioners designing and operating treatment plants. In fact, many new Specialist Groups had their origin in the workshop series starting in 1971 in Vienna taking care of many specific problems reported from practice. The managers and chief operators of large plants, usually only served by meetings of national professional associations, got a new opportunity for global exchange of knowledge and experience together with the global network of scientists and researchers.

2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


1993 ◽  
Vol 28 (10) ◽  
pp. 1-8 ◽  
Author(s):  
A. Gaber ◽  
M. Antill ◽  
W. Kimball ◽  
R. Abdel Wahab

The implementation of urban village wastewater treatment plants in developing countries has historically been primarily a function of appropriate technology choice and deciding which of the many needy communities should receive the available funding and priority attention. Usually this process is driven by an outside funding agency who views the planning, design, and construction steps as relatively insignificant milestones in the overall effort required to quickly better a community's sanitary drainage problems. With the exception of very small scale type sanitation projects which have relatively simple replication steps, the development emphasis tends to be on the final treatment plant product with little or no attention specifically focused on community participation and institutionalizing national and local policies and procedures needed for future locally sponsored facilities replication. In contrast to this, the Government of Egypt (GOE) enacted a fresh approach through a Local Development Program with the United States AID program. An overview is presented of the guiding principals of the program which produced the first 24 working wastewater systems including gravity sewers, sewage pumping stations and wastewater treatment plants which were designed and constructed by local entities in Egypt. The wastewater projects cover five different treatment technologies implemented in both delta and desert regions.


2021 ◽  
Vol 13 (9) ◽  
pp. 1757
Author(s):  
Javier Burgués ◽  
María Deseada Esclapez ◽  
Silvia Doñate ◽  
Laura Pastor ◽  
Santiago Marco

Wastewater treatment plants (WWTPs) are sources of greenhouse gases, hazardous air pollutants and offensive odors. These emissions can have negative repercussions in and around the plant, degrading the quality of life of surrounding neighborhoods, damaging the environment, and reducing employee’s overall job satisfaction. Current monitoring methodologies based on fixed gas detectors and sporadic olfactometric measurements (human panels) do not allow for an accurate spatial representation of such emissions. In this paper we use a small drone equipped with an array of electrochemical and metal oxide (MOX) sensors for mapping odorous gases in a mid-sized WWTP. An innovative sampling system based on two (10 m long) flexible tubes hanging from the drone allowed near-source sampling from a safe distance with negligible influence from the downwash of the drone’s propellers. The proposed platform is very convenient for monitoring hard-to-reach emission sources, such as the plant’s deodorization chimney, which turned out to be responsible for the strongest odor emissions. The geo-localized measurements visualized in the form of a two-dimensional (2D) gas concentration map revealed the main emission hotspots where abatement solutions were needed. A principal component analysis (PCA) of the multivariate sensor signals suggests that the proposed system can also be used to trace which emission source is responsible for a certain measurement.


Author(s):  
Tamara Mainetti ◽  
Marilena Palmisano ◽  
Fabio Rezzonico ◽  
Blaž Stres ◽  
Susanne Kern ◽  
...  

AbstractConjugated estrogens, such as 17β-estradiol-3-sulfate (E2-3S), can be released into aquatic environments through wastewater treatment plants (WWTP). There, they are microbiologically degraded into free estrogens, which can have harmful effects on aquatic wildlife. Here, the degradation of E2-3S in environmental samples taken upstream, downstream and at the effluent of a WWTP was assessed. Sediment and biofilm samples were enriched for E2-3S-degrading microorganisms, yielding a broad diversity of bacterial isolates, including known and novel degraders of estrogens. Since E2-3S-degrading bacteria were also isolated in the sample upstream of the WWTP, the WWTP does not influence the ability of the microbial community to degrade E2-3S.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Wanyi Fu ◽  
Xihui Zhang

AbstractSince the detection of phosphine in the wastewater treatment plants in 1988, more and more investigations revealed that phosphine is closely related to ecological activities on a global scale. Here, we present perspectives on the whole dynamic cycles of phosphorus, particularly in terms of phosphine and its interactions with natural ecosystems, as well as the impacts from human activities. It may conclude that the phosphine-driving cycles of phosphorus depend on the coordination of human activities with natural ecosystems. Most importantly, the extensive recovery of phosphorus in numerous urban wastewater treatment plants may seriously obstruct its global cycles to catch up with the ecological needs in natural ecosystems. Phosphine gas plays an important role in the biogeochemical phosphorus cycle. Phosphorus might be one of the important elements participating in the global climate change together with carbon and nitrogen.


2012 ◽  
Vol 65 (4) ◽  
pp. 589-595 ◽  
Author(s):  
A. Ouali ◽  
H. Jupsin ◽  
J. L. Vasel ◽  
L. Marouani ◽  
A. Ghrabi

Korba wastewater treatment plant is a conventional activated sludge followed by three maturation ponds (MP1, MP2, MP3) in series acting as a tertiary treatment. The first study of wastewater treatment plants showed that the effluent concentration of Escherichia coli and enterococci at the outlet of the (MP3) varies between 103 and 104CFU/100 ml. After the hydrodynamic study conducted by Rhodamine WT which showed short-circuiting in the MP1, two baffles were introduced in the first maturation pond (MP1) to improve the hydrodynamic and the sanitary performances. The second hydraulic study showed that the dispersion number ‘d’ was reduced from 1.45 to 0.43 by this engineering intervention and the Peclet number was raised from 0.69 to 2.32. The hydraulic retention time was increased by 14 h. Because of well-designed baffles, the removal efficiency of E. coli and enterococci was raised between 0.2 and 0.7 log units for the first maturation pond.


2013 ◽  
Vol 67 (7) ◽  
pp. 1481-1489 ◽  
Author(s):  
R. Barat ◽  
J. Serralta ◽  
M. V. Ruano ◽  
E. Jiménez ◽  
J. Ribes ◽  
...  

This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions.


2007 ◽  
Vol 56 (7) ◽  
pp. 21-31 ◽  
Author(s):  
D. Brdjanovic ◽  
M. Mithaiwala ◽  
M.S. Moussa ◽  
G. Amy ◽  
M.C.M. van Loosdrecht

This paper presents results of a novel application of coupling the Activated Sludge Model No. 3 (ASM3) and the Anaerobic Digestion Model No.1 (ADM1) to assess a tropical wastewater treatment plant in a developing country (Surat, India). In general, the coupled model was very capable of predicting current plant operation. The model proved to be a useful tool in investigating various scenarios for optimising treatment performance under present conditions and examination of upgrade options to meet stricter and upcoming effluent discharge criteria regarding N removal. It appears that use of plant-wide modelling of wastewater treatment plants is a promising approach towards addressing often complex interactions within the plant itself. It can also create an enabling environment for the implementations of the novel side processes for treatment of nutrient-rich, side-streams (reject water) from sludge treatment.


1994 ◽  
Vol 30 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Ralf Otterpohl ◽  
Thomas Rolfs ◽  
Jörg Londong

Computer simulation of activated sludge plant for nitrogen removal has become a reliable tool to predict the behaviour of the plant Models including biological phosphorus removal still require some practical experience but they should be available soon. This will offer an even wider range than today's work with nitrogen removal. One major benefit of computer simulation of wastewater treatment plants (WTP) is the optimization of operation. This can be done offline if hydrographs of a plant are collected and computer work is done with “historical” analysis. With online simulation the system is fed with hydrographs up to the actual time. Prognosis can be done from the moment of the computer work based on usual hydrographs. The work of the authors shows how accuratly a treatment plant can be described, when many parameters are measured and available as hydrographs. A very careful description of all details of the special plant is essential, requiring a flexible simulation tool. Based on the accurate simulation a wide range of operational decisions can be evaluated. It was possible to demonstrate that the overall efficiency in nitrogen removal and energy consumption of ml activated sludge plant can be improved.


Sign in / Sign up

Export Citation Format

Share Document