Cocoa Polyphenols: Chemistry, Bioavailability and Effects on Cardiovascular Performance

2019 ◽  
Vol 25 (37) ◽  
pp. 4903-4917 ◽  
Author(s):  
Laura Dugo ◽  
Giusy Tripodo ◽  
Luca Santi ◽  
Chiara Fanali

This review gives an overview of the phenolic compounds composition of cocoa beans and their modification during manufacturing processes to the final products. Recently published papers dealing with the qualitative and quantitative analysis of the different classes of cocoa phenolic compounds will be discussed. Modifications of the qualitative profile and amount of phenolic compounds in cocoa after the main processes of production chain, fermentation, drying, roasting, and alkalization, will be described. The second part will focus on some of the biological effects described for cocoa phenolic compounds in vitro and in vivo. In particular, the effects of cocoa flavanols on cardiovascular health and endothelial function have been extensively investigated over the last decades, with interesting results from nutritional intervention trials and molecular studies. A few recent updates on the role of cocoa and chocolate consumption on sport performances will be reported.

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1932
Author(s):  
Chiara D’Angelo ◽  
Sara Franceschelli ◽  
José Luis Quiles ◽  
Lorenza Speranza

The growing incidence of cardiovascular disease (CVD) has promoted investigations of natural molecules that could prevent and treat CVD. Among these, hydroxytyrosol, a polyphenolic compound of olive oil, is well known for its antioxidant, anti-inflammatory, and anti-atherogenic effects. Its strong antioxidant properties are due to the scavenging of radicals and the stimulation of synthesis and activity of antioxidant enzymes (SOD, CAT, HO-1, NOS, COX-2, GSH), which also limit the lipid peroxidation of low-density lipoprotein (LDL) cholesterol, a hallmark of atherosclerosis. Lowered inflammation and oxidative stress and an improved lipid profile were also demonstrated in healthy subjects as well as in metabolic syndrome patients after hydroxytyrosol (HT) supplementation. These results might open a new therapeutic scenario through personalized supplementation of HT in CVDs. This review is the first attempt to collect together scientific literature on HT in both in vitro and in vivo models, as well as in human clinical studies, describing its potential biological effects for cardiovascular health.


Revista CERES ◽  
2014 ◽  
Vol 61 (suppl) ◽  
pp. 764-779 ◽  
Author(s):  
Lívia de Lacerda de Oliveira ◽  
Mariana Veras de Carvalho ◽  
Lauro Melo

Phenolic compounds have been extensively studied in recent years. The presence of these compounds in various foods has been associated with sensory and health promoting properties. These products from the secondary metabolism of plants act as defense mechanisms against environmental stress and attack by other organisms. They are divided into different classes according to their chemical structures. The objective of this study was to describe the different classes of phenolic compounds, the main food sources and factors of variation, besides methods for the identification and quantification commonly used to analyze these compounds. Moreover, the role of phenolic compounds in scavenging oxidative stress and the techniques of in vitro antioxidant evaluation are discussed. In vivo studies to evaluate the biological effects of these compounds and their impact on chronic disease prevention are presented as well. Finally, it was discussed the role of these compounds on the sensory quality of foods.


Author(s):  
J. H. H. Thijssen ◽  
M. A. Blankenstein

SynopsisThe levels of endogenous steroids in the target tissues are thought to be more closely related to the biological effects than their concentrations in plasma. Therefore studies on oestrogen levels in malignant and non-malignant breast tissues (expressed per g wet weight) were conducted and the following conclusions were drawn:(1) malignant tumours contained higher oestradiol levels than normal or benign breast tissues, whereas oestrone levels were more comparable;(2) in contrast to the large decrease in plasma concentrations after menopause, the levels of oestradiol in tumours and in normal breast tissue did not change with advancing age;(3) the oestradiol levels in breast tissues were lower than in uterine tissues, particularly in women before menopause; oestrone levels were very similar in all tissues studied;(4) the mean oestradiol level was higher in oestrogen-receptor-positive tumours, but no correlation between the two parameters was found;(5) preliminary results indicated lower oestradiol levels in tumours obtained from countries with a lower incidence of breast cancer;(6) as far as available, oestrone levels were comparable and those of oestradiol were lower in fat tissues than in breast tumours;(7) neither in vitro studies with breast tumours, nor in vivo results using myometrial tissues support a prominent role of the metabolism of oestrogens at the 16α-position in the development of tumours;(8) the role of local factors in the production, retention and metabolism of oestradiol in the breast remains to be elucidated.


2019 ◽  
Vol 316 (6) ◽  
pp. E987-E997 ◽  
Author(s):  
Binbin Huang ◽  
Chen Huang ◽  
Huashan Zhao ◽  
Wen Zhu ◽  
Baobei Wang ◽  
...  

Chemerin and G protein-coupled receptor 1 (GPR1) are increased in serum and placenta in mice during pregnancy. Interestingly, we observed increased serum chemerin levels and decreased GPR1 expression in placenta of high-fat-diet-fed mice compared with chow-fed mice at gestational day 18. GPR1 protein and gene levels were significantly decreased in gestational diabetes mellitus (GDM) patient placentas. Therefore, we hypothesized that chemerin/GPR1 signaling might participate in the pathogenic mechanism of GDM. We investigated the role of GPR1 in carbohydrate homeostasis during pregnancy using pregnant mice transfected with small interfering RNA for GPR1 or a negative control. GPR1 knockdown exacerbated glucose intolerance, disrupted lipid metabolism, and decreased β-cell proliferation and insulin levels. Glucose transport protein-3 and fatty acid binding protein-4 were downregulated with reducing GPR1 in vivo and in vitro via phosphorylated AKT pathway. Taken together, our findings first demonstrate the expression of GPR1, the characterization of its direct biological effects in humans and mice, as well as the molecular mechanism that indicates the role of GPR1 signaling in maternal metabolism during pregnancy, suggesting a novel feedback mechanism to regulate glucose balance during pregnancy, and GPR1 could be a potential target for the detection and therapy of GDM.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 596 ◽  
Author(s):  
María del Carmen Villegas-Aguilar ◽  
Álvaro Fernández-Ochoa ◽  
María de la Luz Cádiz-Gurrea ◽  
Sandra Pimentel-Moral ◽  
Jesús Lozano-Sánchez ◽  
...  

Dietary phenolic compounds are considered as bioactive compounds that have effects in different chronic disorders related to oxidative stress, inflammation process, or aging. These compounds, coming from a wide range of natural sources, have shown a pleiotropic behavior on key proteins that act as regulators. In this sense, this review aims to compile information on the effect exerted by the phenolic compounds and their metabolites on the main metabolic pathways involved in energy metabolism, inflammatory response, aging and their relationship with the biological properties reported in high prevalence chronic diseases. Numerous in vitro and in vivo studies have demonstrated their pleiotropic molecular mechanisms of action and these findings raise the possibility that phenolic compounds have a wide variety of roles in different targets.


2020 ◽  
Vol 9 ◽  
Author(s):  
Fellipe Lopes De Oliveira ◽  
Thaise Yanka Portes Arruda ◽  
Renan Da Silva Lima ◽  
Sabrina Neves Casarotti ◽  
Maressa Caldeira Morzelle

Pomegranate, a recognized source of phenolic compounds, has been associated with health-promoting benefits, mostly due to its antioxidant activity. Ellagic and gallic acids, anthocyanins, and ellagitannins are the main phenolics in pomegranate, showing antioxidant activity. For this reason, pomegranate has been used in foods, such as meat products, as an attempt to retard lipid oxidation and increase shelf-life. In recent years, in vitro, in vivo, and human studies reported the antioxidant activity of pomegranate, especially its peels, with reduced incidence of chronic diseases (e.g., cardiovascular ailments, cancer, neurodegenerative disease, type 2 diabetes, chronic kidney disease). This review aims to present the main antioxidant compounds on pomegranate and their biological effects, the antioxidant activity of pomegranate-based foods, the application of pomegranate as a natural antioxidant food additive, the role of pomegranate in the prevention and management of chronic diseases, as well as the trends and prospects regarding the application of pomegranate in innovative food and health.


2021 ◽  
Author(s):  
kunwei niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long non-coding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown. We study aim to investigate the underlying mechanisms of lncRNA (upregulated in hepatocellular carcinoma) URHC in HCC. Methods: RT-qPCR, fluorescence in situ hybridization (FISH) staining, EdU, colony formation, and tumor xenografts experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The bioinformatics analysis, Dual-luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC.Results: URHC silencing may inhibit the HCC cells proliferation in vitro and in vivo. We found that URHC was mainly localized in the cytoplasm. The expression of miR-5007-3p was negatively regulated by URHC. And miR-5007-3p could reverse the effect of URHC in HCC cells. The expression of DNAJB9 was negatively regulated by miR-5007-3p but positively regulated by URHC. These suggesting of lncRNA-URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p.Conclusion: Together, our study elucidated the role of URHC as a miRNA sponge in HCC, and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 655-663 ◽  
Author(s):  
SA Weitzman ◽  
LI Gordon

Abstract We have reviewed some of the data that link the reactive oxygen species produced by inflammatory phagocytes to cancer development. While it is clear that these substances induce phenotypic changes characteristic of those produced by known carcinogens, the precise mechanisms by which these effects are produced require much further study. In vitro, it would appear that phagocyte-generated oxidants could be complete carcinogens, ie, could cause both tumor initiation and promotion. In vivo, however, these substances appear usually to function as tumor promoters or cocarcinogens perhaps because of high levels of endogenous antioxidant defenses. This suggests that there may be even more reason to be optimistic about the potential for positive results in cancer chemoprevention trials in humans, and provides further rationale for the continuing interest in the use of antioxidants and anti- inflammatory drugs in current and future trials. For example, the Chemoprevention Branch of the National Cancer Institute is currently sponsoring seven extramural human efficacy intervention trials testing whether the antioxidant beta carotene can prevent cancer.


2020 ◽  
Author(s):  
kunwei niu ◽  
Shibin Qu ◽  
Xuan Zhang ◽  
Jimin Dai ◽  
Jianlin Wang ◽  
...  

Abstract Background: To investigate the underlying mechanisms of lncRNA URHC in HCC. Methods: RT-qPCR, FISH staining, EdU, colony formation, and tumor xenografts experiments were used to identify localized and biological effects of URHC on HCC cells in vitro and in vivo. The Bioinformatics analysis, Dual- luciferase reporter assay, and rescue experiments revealed the potential mechanism of URHC. Results: We found that URHC was mainly localized in the cytoplasm. URHC silencing may inhibit the HCC cells proliferation. And URHC positively regulated the level of DNAJB9 by sponging miR-5007-3p. Conclusion: Together, our study elucidated the role of URHC as a miRNA sponge in HCC, and shed new light on lncRNA-directed diagnostics and therapeutics in HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Javad Sharifi-Rad ◽  
Cristina Quispe ◽  
Wissam Zam ◽  
Manoj Kumar ◽  
Susana M. Cardoso ◽  
...  

Cardiovascular diseases (CVD) are one of the main causes of mortality in the world. The development of these diseases has a specific factor—alteration in blood platelet activation. It has been shown that phenolic compounds have antiplatelet aggregation abilities and a positive impact in the management of CVD, exerting prominent antioxidant, anti-inflammatory, antitumor, cardioprotective, antihyperglycemic, and antimicrobial effects. Thus, this review is intended to address the antiplatelet activity of phenolic compounds with special emphasis in preventing CVD, along with the mechanisms of action through which they are able to prevent and treat CVD. In vitro and in vivo studies have shown beneficial effects of phenolic compound-rich plant extracts and isolated compounds against CVD, despite that the scientific literature available on the antiplatelet aggregation ability of phenolic compounds in vivo is scarce. Thus, despite the current advances, further studies are needed to confirm the cardioprotective potential of phenolic compounds towards their use alone or in combination with conventional drugs for effective therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document