Natural Products as Potential Anti-Alzheimer Agents

2020 ◽  
Vol 27 (35) ◽  
pp. 5887-5917 ◽  
Author(s):  
Siva S. Panda ◽  
Nancy Jhanji

Medicinal plants have curative properties due to the presence of various complex chemical substances of different composition, which are found as secondary metabolites in one or more parts of the plant. The diverse secondary metabolites play an important role in the prevention and cure of various diseases including neurodegenerative diseases like Alzheimer’s disease. Naturally occurring compounds such as flavonoids, polyphenols, alkaloids, and glycosides found in various parts of the plant and/or marine sources may potentially protect neurodegeneration as well as improve memory and cognitive function. Many natural compounds show anti-Alzheimer activity through specific pharmacological mechanisms like targeting β-amyloid, Beta-secretase 1 and Acetylcholinesterase. In this review, we have compiled more than 130 natural products with a broad diversity in the class of compounds, which were isolated from different sources showing anti- Alzheimer properties.

2019 ◽  
Vol 16 (1) ◽  
pp. 112-129 ◽  
Author(s):  
Aurelio Ortiz ◽  
Miriam Castro ◽  
Estibaliz Sansinenea

Background:3,4-dihydroisocoumarins are an important small group belonging to the class of naturally occurring lactones isolated from different bacterial strains, molds, lichens, and plants. The structures of these natural compounds show various types of substitution in their basic skeleton and this variability influences deeply their biological activities. These lactones are structural subunits of several natural products and serve as useful intermediates in the synthesis of different heterocyclic molecules, which exhibit a wide range of biological activities, such as anti-inflammatory, antiplasmodial, antifungal, antimicrobial, antiangiogenic and antitumoral activities, among others. Their syntheses have attracted attention of many researchers reporting many synthetic strategies to achieve 3,4-dihydroisocoumarins and other related structures. </P><P> Objective: In this context, the isolation of these natural compounds from different sources, their syntheses and biological activities are reviewed, adding the most recent advances and related developments.Conclusion:This review aims to encourage further work on the isolation and synthesis of this class of natural products. It would be beneficial for synthetic as well as the medicinal chemists to design selective, optimized dihydroisocoumarin derivatives as potential drug candidates, since dihydroisocoumarin scaffolds have significant utility in the development of therapeutically relevant and biologically active compounds.


2018 ◽  
Vol 4 (5) ◽  
Author(s):  
Fernanda I. Saldívar-González ◽  
B. Angélica Pilón-Jiménez ◽  
José L. Medina-Franco

AbstractThe chemical space of naturally occurring compounds is vast and diverse. Other than biologics, naturally occurring small molecules include a large variety of compounds covering natural products from different sources such as plant, marine, and fungi, to name a few, and several food chemicals. The systematic exploration of the chemical space of naturally occurring compounds have significant implications in many areas of research including but not limited to drug discovery, nutrition, bio- and chemical diversity analysis. The exploration of the coverage and diversity of the chemical space of compound databases can be carried out in different ways. The approach will largely depend on the criteria to define the chemical space that is commonly selected based on the goals of the study. This chapter discusses major compound databases of natural products and cheminformatics strategies that have been used to characterize the chemical space of natural products. Recent exemplary studies of the chemical space of natural products from different sources and their relationships with other compounds are also discussed. We also present novel chemical descriptors and data mining approaches that are emerging to characterize the chemical space of naturally occurring compounds.


2013 ◽  
Vol 8 (8) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Serena Fiorito ◽  
Francesco Epifano ◽  
Celine Bruyère ◽  
Robert Kiss ◽  
Salvatore Genovese

As a continuation of our ongoing studies aimed to depict the effects and mechanism of action of naturally occurring oxyprenylated phenylpropanoids and polyketides, in this paper we describe the synthesis and in vitro anti-proliferative effects of selected compounds belonging to the above cited classes of secondary metabolites on six cancer cell lines using the MTT colorimetric assay. Our study revealed that among the natural products tested, only oxyprenylated chalcones exhibited an appreciable effect (mean IC50 = 32 - 64 μM), while substituted alcohols, phenylpropenes, naphthoquinones, and aminoacid derivatives were by far less active or inactive.


Author(s):  
Fernanda I. Saldívar-González ◽  
Alejandro Gómez-García ◽  
Norberto Sánchez-Cruz ◽  
Javier Ruiz-Rios ◽  
B. Angélica Pilón-Jiménez ◽  
...  

Naturally occurring small molecules include a large variety of natural products from different sources that have confirmed activity against epigenetic targets. In this work we review chemoinformatic, molecular modeling and other computational approaches that have been used to uncover natural products as inhibitors of DNA metiltransferases, a major family of epigenetic targets with significant potential for the treatment of cancer and several other diseases. Examples of these computational approaches include docking, similarity-based virtual screening, and pharmacophore modeling. It is also commented the chemoinformatic-based exploration of the chemical space of naturally occurring compounds as epigenetic modulators which may have significant implications in epigenetic drug discovery and nutriepigenetics.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
F Epifano ◽  
S Genovese ◽  
P Lullo ◽  
S Fiorito ◽  
G Trivisonno ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Rafael de Felício ◽  
Patricia Ballone ◽  
Cristina Freitas Bazzano ◽  
Luiz F. G. Alves ◽  
Renata Sigrist ◽  
...  

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4226
Author(s):  
Nikolaos Pitsikas ◽  
Konstantinos Dimas

Natural products or organic compounds isolated from natural sources as primary or secondary metabolites have inspired numerous drugs [...]


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 719
Author(s):  
Meri Yulvianti ◽  
Christian Zidorn

Cyanogenic glycosides are an important and widespread class of plant natural products, which are however structurally less diverse than many other classes of natural products. So far, 112 naturally occurring cyanogenic glycosides have been described in the phytochemical literature. Currently, these unique compounds have been reported from more than 2500 plant species. Natural cyanogenic glycosides show variations regarding both the aglycone and the sugar part of the molecules. The predominant sugar moiety is glucose but many substitution patterns of this glucose moiety exist in nature. Regarding the aglycone moiety, four different basic classes can be distinguished, aliphatic, cyclic, aromatic, and heterocyclic aglycones. Our overview covers all cyanogenic glycosides isolated from plants and includes 33 compounds with a non-cyclic aglycone, 20 cyclopentane derivatives, 55 natural products with an aromatic aglycone, and four dihydropyridone derivatives. In the following sections, we will provide an overview about the chemical diversity known so far and mention the first source from which the respective compounds had been isolated. This review will serve as a first reference for researchers trying to find new cyanogenic glycosides and highlights some gaps in the knowledge about the exact structures of already described compounds.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2596-2607
Author(s):  
R. P. Vivek-Ananth ◽  
Ajaya Kumar Sahoo ◽  
Kavyaa Kumaravel ◽  
Karthikeyan Mohanraj ◽  
Areejit Samal

First dedicated manually curated resource on secondary metabolites and therapeutic uses of medicinal fungi. Cheminformatics based analysis of the chemical space of fungal natural products.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 47
Author(s):  
Justin M. McNab ◽  
Jorge Rodríguez ◽  
Peter Karuso ◽  
Jane E. Williamson

Marine invertebrates are promising sources of novel bioactive secondary metabolites, and organisms like sponges, ascidians and nudibranchs are characterised by possessing potent defensive chemicals. Animals that possess chemical defences often advertise this fact with aposematic colouration that potential predators learn to avoid. One seemingly defenceless group that can present bright colouration patterns are flatworms of the order Polycladida. Although members of this group have typically been overlooked due to their solitary and benthic nature, recent studies have isolated the neurotoxin tetrodotoxin from these mesopredators. This review considers the potential of polyclads as potential sources of natural products and reviews what is known of the activity of the molecules found in these animals. Considering the ecology and diversity of polyclads, only a small number of species from both suborders of Polycladida, Acotylea and Cotylea have been investigated for natural products. As such, confirming assumptions as to which species are in any sense toxic or if the compounds they use are biosynthesised, accumulated from food or the product of symbiotic bacteria is difficult. However, further research into the group is suggested as these animals often display aposematic colouration and are known to prey on invertebrates rich in bioactive secondary metabolites.


Sign in / Sign up

Export Citation Format

Share Document