The Azoles in Pharmacochemistry: Perspectives on the Synthesis of New Compounds and Chemoinformatic Contributions

2020 ◽  
Vol 25 (44) ◽  
pp. 4702-4716 ◽  
Author(s):  
Jéssika de Oliveira Viana ◽  
Alex France Messias Monteiro ◽  
José Maria Barbosa Filho ◽  
Luciana Scotti ◽  
Marcus Tullius Scotti

: Due to their versatile biological activity, Azoles are widely studied in pharmacochemistry. It is possible to use them in many applications and in studies aimed at discovering antiparasitic, antineoplastic, antiviral, antimicrobial compounds; and in the production of materials for treatment of varied pathologies. Based on their biological activity, our review presents several studies that involve this class of organic compounds. A bibliographic survey of this type can effectively contribute to pharmaceutical sciences, stimulating the discovery of new compounds, and structural improvements to biological profiles of interest. In this review, articles are discussed involving the synthesis of new compounds and chemoinformatic contributions. Current applications of azoles in both the pharmaceutical and agri-business sectors are well known, yet as this research highlights, azole compounds can also bring important contributions to the fight against many diseases. Among the heterocyclics, azoles are increasingly studied by research groups around the world for application against tuberculosis, HIV, fungal and bacterial infections; and against parasites such as leishmaniasis and trypanosomiasis. Our hope is that this work will help arouse the interest of research groups planning to develop new bioactives to fight against these and other diseases.

2020 ◽  
Vol 7 (2) ◽  
pp. 12-25
Author(s):  
Adil Hussein Dalaf ◽  
Fawzi Hameed Jumaa

"Preparation of heterocyclic compounds with new pharmacological properties. Preparation of organic compounds with high biological activity against bacterial germs. Diagnosis of prepared compounds by physical and spectroscopic methods. Spectroscopic and physical measurements validated the prepared compounds. Studying the effect of lasers on these compounds, as it has been proven that the rays do not affect them.


2022 ◽  
Vol 10 (1) ◽  
pp. 185
Author(s):  
Davide Roncarati ◽  
Vincenzo Scarlato ◽  
Andrea Vannini

Since the discovery of penicillin in the first half of the last century, antibiotics have become the pillars of modern medicine for fighting bacterial infections. However, pathogens resistant to antibiotic treatment have increased in recent decades, and efforts to discover new antibiotics have decreased. As a result, it is becoming increasingly difficult to treat bacterial infections successfully, and we look forward to more significant efforts from both governments and the scientific community to research new antibacterial drugs. This perspective article highlights the high potential of bacterial transcriptional and posttranscriptional regulators as targets for developing new drugs. We highlight some recent advances in the search for new compounds that inhibit their biological activity and, as such, appear very promising for treating bacterial infections.


2018 ◽  
Vol 5 (5) ◽  
pp. 172280 ◽  
Author(s):  
Nicholas G. Moon ◽  
Andrew M. Harned

The briarane diterpenoids are a large family of marine natural products that have been primarily isolated from gorgonian octocorals around the world. Structurally, the family is characterized by a trans -fused bicyclo[8.4.0]tetradecane ring system containing a central, stereogenic, all-carbon quaternary carbon (C1) flanked by three additional stereocentres (C2, C10, C14). Many family members have demonstrated biological activity in numerous areas, including: cytotoxicity, anti-inflammatory, antiviral, antifungal, immunomodulatory and insect control. Despite their interesting structural properties and bioactivity, the briaranes have been largely overlooked by the synthetic community. However, in recent years, several research groups have reported progress toward developing a synthetic route to these natural products. Most of these efforts have focused on the stereoselective construction of the central C1–C2–C10–C14 stereotetrad. This review will discuss the various synthetic efforts aimed at the briarane diterpenoids along with the challenges that remain.


Author(s):  
Valeria Seidita ◽  
Francesco Lanza ◽  
Arianna Pipitone ◽  
Antonio Chella

Abstract Motivation The epidemic at the beginning of this year, due to a new virus in the coronavirus family, is causing many deaths and is bringing the world economy to its knees. Moreover, situations of this kind are historically cyclical. The symptoms and treatment of infected patients are, for better or worse even for new viruses, always the same: more or less severe flu symptoms, isolation and full hygiene. By now man has learned how to manage epidemic situations, but deaths and negative effects continue to occur. What about technology? What effect has the actual technological progress we have achieved? In this review, we wonder about the role of robotics in the fight against COVID. It presents the analysis of scientific articles, industrial initiatives and project calls for applications from March to now highlighting how much robotics was ready to face this situation, what is expected from robots and what remains to do. Results The analysis was made by focusing on what research groups offer as a means of support for therapies and prevention actions. We then reported some remarks on what we think is the state of maturity of robotics in dealing with situations like COVID-19.


2021 ◽  
Vol 11 (3) ◽  
pp. 1180
Author(s):  
Kinga Paruch ◽  
Łukasz Popiołek ◽  
Anna Biernasiuk ◽  
Anna Berecka-Rycerz ◽  
Anna Malm ◽  
...  

Bacterial infections, especially those caused by strains resistant to commonly used antibiotics and chemotherapeutics, are still a current threat to public health. Therefore, the search for new molecules with potential antimicrobial activity is an important research goal. In this article, we present the synthesis and evaluation of the in vitro antimicrobial activity of a series of 15 new derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid. The potential antimicrobial effect of the new compounds was observed mainly against Gram-positive bacteria. Compound 15, with the 5-nitro-2-furoyl moiety, showed the highest bioactivity: minimum inhibitory concentration (MIC) = 1.95–15.62 µg/mL and minimum bactericidal concentration (MBC)/MIC = 1–4 µg/mL.


Epidemiologia ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 315-324
Author(s):  
Juan M. Banda ◽  
Ramya Tekumalla ◽  
Guanyu Wang ◽  
Jingyuan Yu ◽  
Tuo Liu ◽  
...  

As the COVID-19 pandemic continues to spread worldwide, an unprecedented amount of open data is being generated for medical, genetics, and epidemiological research. The unparalleled rate at which many research groups around the world are releasing data and publications on the ongoing pandemic is allowing other scientists to learn from local experiences and data generated on the front lines of the COVID-19 pandemic. However, there is a need to integrate additional data sources that map and measure the role of social dynamics of such a unique worldwide event in biomedical, biological, and epidemiological analyses. For this purpose, we present a large-scale curated dataset of over 1.12 billion tweets, growing daily, related to COVID-19 chatter generated from 1 January 2020 to 27 June 2021 at the time of writing. This data source provides a freely available additional data source for researchers worldwide to conduct a wide and diverse number of research projects, such as epidemiological analyses, emotional and mental responses to social distancing measures, the identification of sources of misinformation, stratified measurement of sentiment towards the pandemic in near real time, among many others.


RSC Advances ◽  
2017 ◽  
Vol 7 (26) ◽  
pp. 15776-15804 ◽  
Author(s):  
Monika Gensicka-Kowalewska ◽  
Grzegorz Cholewiński ◽  
Krystyna Dzierzbicka

Many people in the world struggle with cancer or bacterial, parasitic, viral, Alzheimer's and other diseases.


PEDIATRICS ◽  
1994 ◽  
Vol 94 (2) ◽  
pp. 280-280
Author(s):  
Arden Levy ◽  
Andrew Liu

Purpose of the Studies. Hyper-IgM immunodeficiency is characterized by recurrent bacterial infections, normal or elevated IgM, and markedly decreased IgG, IgA, and IgE. Previous research suggested that the T cells of these patients are defective in their ability to help B cells make functional antibody. CD40 ligand (CD4OL) is a membrane glycoprotein on activated T helper cells and binds the CD40 molecule expressed on B cells, and induces proliferation and immunoglobulin class switching (in conjunction with IL-4). The gene for the CD4OL has been mapped to position q26.3-q27.1 on chromosome X (same as the Hyper-IgM gene and the area of isotype switching). Several research groups sought to determine if the immunodeficiency in Hyper-IgM patients is due to defective CD4OL. Findings. The five papers listed above document the work of different research groups that simultaneously found abnormalities in the CD4OL gene in a total of 16 patients with X-linked Hyper-IgM syndrome. Different mutations of the CD4OL gene have been discovered, including point mutations, deletions, and nonsense sequences. Mutant version of CD4OL taken from Hyper IgM patients were unable to "help" B cells in vitro. Thus, deficient CD40/CD40L interactions between B and T cells results in severely impaired immunity. Restricted CD40L gene expression to T cells may ultimately allow gene therapy as treatment. Reviewers' Comments. A concise editorial by Jean Marx entitled "Cell Communication Failure Leads to Immune Disorder" describes this landmark research and accompanies the Spriggs article in the February 12th issue of Science (pp. 896-897). This discovery may not only lead to treatment of this disorder, but also modification of other less favorable immune responses.


PEDIATRICS ◽  
1994 ◽  
Vol 94 (2) ◽  
pp. 280-280
Author(s):  
Arden Levy ◽  
Andrew Liu

Purpose of the Studies. Hyper-IgM immunodeficiency is characterized by recurrent bacterial infections, normal or elevated IgM, and markedly decreased IgG, IgA, and IgE. Previous research suggested that the T cells of these patients are defective in their ability to help B cells make functional antibody. CD40 ligand (CD4OL) is a membrane glycoprotein on activated T helper cells and binds the CD40 molecule expressed on B cells, and induces proliferation and immunoglobulin class switching (in conjunction with IL-4). The gene for the CD4OL has been mapped to position q26.3-q27.1 on chromosome X (same as the Hyper-IgM gene and the area of isotype switching). Several research groups sought to determine if the immunodeficiency in Hyper-IgM patients is due to defective CD4OL. Findings. The five papers listed above document the work of different research groups that simultaneously found abnormalities in the CD4OL gene in a total of 16 patients with X-linked Hyper-IgM syndrome. Different mutations of the CD4OL gene have been discovered, including point mutations, deletions, and nonsense sequences. Mutant version of CD4OL taken from Hyper IgM patients were unable to "help" B cells in vitro. Thus, deficient CD40/CD40L interactions between B and T cells results in severely impaired immunity. Restricted CD40L gene expression to T cells may ultimately allow gene therapy as treatment. Reviewers' Comments. A concise editorial by Jean Marx entitled "Cell Communication Failure Leads to Immune Disorder" describes this landmark research and accompanies the Spriggs article in the February 12th issue of Science (pp. 896-897). This discovery may not only lead to treatment of this disorder, but also modification of other less favorable immune responses.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksey E. Kuznetsov

Abstract Various (metallo)porphyrins and related compounds have been intensively investigated by different research groups due to their extremely important role in living organisms along with their versatile applications in technology. The design of novel porphyrinoids by core-modification, or substitution of pyrrole nitrogens, with the elements of other groups of the Periodic Table has been considered as a highly promising methodology for tuning structures and properties of porphyrinoids and thus opening new possible applications for them. Much effort has been given to the modifications of the porphyrin core with elements of the main groups, namely O, S, Se (chalcogens), and the heavier congener of nitrogen, phosphorus. In general, the porphyrin core modification by replacing nitrogens with heteroatoms is a promising and effective strategy for obtaining new compounds with unusual structures and properties (optical, electrochemical, coordinating, etc.) as well as reactivity. These novel molecules can also be employed as promising building or construction blocks in various applications in the nanotechnology area.


Sign in / Sign up

Export Citation Format

Share Document