scholarly journals Targeting of Regulators as a Promising Approach in the Search for Novel Antimicrobial Agents

2022 ◽  
Vol 10 (1) ◽  
pp. 185
Author(s):  
Davide Roncarati ◽  
Vincenzo Scarlato ◽  
Andrea Vannini

Since the discovery of penicillin in the first half of the last century, antibiotics have become the pillars of modern medicine for fighting bacterial infections. However, pathogens resistant to antibiotic treatment have increased in recent decades, and efforts to discover new antibiotics have decreased. As a result, it is becoming increasingly difficult to treat bacterial infections successfully, and we look forward to more significant efforts from both governments and the scientific community to research new antibacterial drugs. This perspective article highlights the high potential of bacterial transcriptional and posttranscriptional regulators as targets for developing new drugs. We highlight some recent advances in the search for new compounds that inhibit their biological activity and, as such, appear very promising for treating bacterial infections.

2020 ◽  
Vol 26 (8) ◽  
pp. 867-904 ◽  
Author(s):  
Maria Fesatidou ◽  
Anthi Petrou ◽  
Geronikaki Athina

Background: Bacterial infections are a growing problem worldwide causing morbidity and mortality mainly in developing countries. Moreover, the increased number of microorganisms, developing multiple resistances to known drugs, due to abuse of antibiotics, is another serious problem. This problem becomes more serious for immunocompromised patients and those who are often disposed to opportunistic fungal infections. Objective: The objective of this manuscript is to give an overview of new findings in the field of antimicrobial agents among five-membered heterocyclic compounds. These heterocyclic compounds especially five-membered attracted the interest of the scientific community not only for their occurrence in nature but also due to their wide range of biological activities. Method: To reach our goal, a literature survey that covers the last decade was performed. Results: As a result, recent data on the biological activity of thiazole, thiazolidinone, benzothiazole and thiadiazole derivatives are mentioned. Conclusion: It should be mentioned that despite the progress in the development of new antimicrobial agents, there is still room for new findings. Thus, research still continues.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 522 ◽  
Author(s):  
Paula Segura-Ramírez ◽  
Pedro Silva Júnior

The remarkable ability of microorganisms to develop resistance to conventional antibiotics is one of the biggest challenges that the pharmaceutical industry currently faces. Recent studies suggest that antimicrobial peptides discovered in spider venoms may be useful resources for the design of structurally new anti-infective agents effective against drug-resistant microorganisms. In this work, we found an anionic antibacterial peptide named U1-SCRTX-Lg1a in the venom of the spider Loxosceles gaucho. The peptide was purified using high-performance liquid chromatography (HPLC), its antimicrobial activity was tested through liquid growth inhibition assays, and its chemical properties were characterized using mass spectrometry. U1-SCRTX-Lg1a was found to show a monoisotopic mass of 1695.75 Da, activity against Gram-negative bacteria, a lack of hemolytic effects against human red blood cells, and a lack of cytotoxicity against human cervical carcinoma cells (HeLa). Besides this, the sequence of the peptide exhibited great similarity to specific regions of phospholipases D from different species of Loxosceles spiders, leading to the hypothesis that U1-SCRTX-Lg1a may have originated from a limited proteolytic cleavage. Our data suggest that U1-SCRTX-Lg1a is a promising candidate for the development of new antibiotics that could help fight bacterial infections and represents an exciting discovery for Loxosceles spiders.


2013 ◽  
Vol 2 (3) ◽  
pp. 65
Author(s):  
A. G. Shakhov ◽  
D. V. Fedosov ◽  
L. Y. Sashnina ◽  
O. V. Kazimirov

<p>As a result of wide antibiotics, sulfonamides and other antimicrobial agents usage for the therapy of the animals with the bacterial infections caused by various causative agents including <em>Escherichia coli</em>, many microorganisms gained resistance to the chemotherapeutic agents. New combined drugs are being worked out during recent years, the components of which have various influence mechanisms on the bacterial cell that helps to provide resistance forming control. The results of the researches of the new antimicrobial agents, containing antibiotics in their composition, and non-antibiotic agent influence on the ultrastructure of <em>Escherichia coli</em> are represented in this study.</p> <p>5-hour <em>Escherichia coli 866</em> culture was processed by the drugs of the minimum bactericidal (Tylocolinum-0.39 µg/ml, Tetragold-6.25 µg/ml, Cidisept-o-25 µg/ml) and 4-time concentrations during 3 hours. Samples and control culture (without drugs) were fixed by the 2.5% glutaricdialdehyde on the s-Collidine Buffer, dehydrated in the ethanol with rising concentration, filled in epoxies. Ultrathin slices were stained by 2% water solution of uranyl acetate and lead citrate for 10 minutes. Then they were examined with the use of the electron microscope JEM-100 CX II by JEOL.</p> <p>The research showed deep ultrastructural changes in <em>Escherichia coli</em> cells under the antimicrobial agent influence determined by synergistic effect of combined Tylocolinum and Tetragold drugs components, possessing various bacteria influencing mechanisms, and aldehyde that is a component of Cidisept-o.</p> The electron microscopy usage allows to get unique information about the impact consequences of the traditional improved drugs and new drugs with antimicrobial activity on the bacterial infectious agents.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
James V. Rogers ◽  
Veronica L. Hall ◽  
Charles C. McOsker

Antimicrobial resistance (AMR) is a concerning global threat that, if not addressed, could lead to increases in morbidity and mortality, coupled with societal and financial burdens. The emergence of AMR bacteria can be attributed, in part, to the decreased development of new antibiotics, increased misuse and overuse of existing antibiotics, and inadequate treatment options for biofilms formed during bacterial infections. Biofilms are complex microbiomes enshrouded in a self-produced extracellular polymeric substance (EPS) that is a primary defense mechanism of the resident microorganisms against antimicrobial agents and the host immune system. In addition to the physical protective EPS barrier, biofilm-resident bacteria exhibit tolerance mechanisms enabling persistence and the establishment of recurrent infections. As current antibiotics and therapeutics are becoming less effective in combating AMR, new innovative technologies are needed to address the growing AMR threat. This perspective article highlights such a product, CMTX-101, a humanized monoclonal antibody that targets a universal component of bacterial biofilms, leading to pathogen-agnostic rapid biofilm collapse and engaging three modes of action—the sensitization of bacteria to antibiotics, host immune enablement, and the suppression of site-specific tissue inflammation. CMTX-101 is a new tool used to enhance the effectiveness of existing, relatively inexpensive first-line antibiotics to fight infections while promoting antimicrobial stewardship.


2018 ◽  
Vol 63 (3) ◽  
pp. 106-114
Author(s):  
V. L. Andronova

Modern therapy of infections caused by alpha-herpesviruses is based on drugs belonging to the class of modified nucleosides (acyclovir) and their metabolic progenitors - valine ester of acyclovir and famciclovir (prodrug of penciclovir). The biological activity of these compounds is determined by the similarity of their structure to natural nucleosides: modified nucleosides compete with natural nucleosides for binding to DNA-polymerase and, due to their structural features, inhibit its activity. However, the emergence of variants of viruses resistant to the antiviral drugs available in the arsenal of modern medicine necessitates the search for new compounds able of effectively inhibiting the reproduction of viruses. These compounds should be harmless to the macroorganisms, convenient to use, and overcoming the drug resistance barrier in viruses. The search for literature in international databases (PubMed, MedLine, RINC, etc.) in order to obtain information on promising developments that open new possibilities for treating herpesvirus infection and subsequent analysis of the collected data made it possible to determine not only the main trends in the search for new antiviral agents, but also to provide information on the compounds most promising for the development of anti-herpesvirus drugs.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3314 ◽  
Author(s):  
Negash ◽  
Norris ◽  
Hodgkinson

Antibiotic resistance is a global health concern and a current threat to modern medicine and society. New strategies for antibiotic drug design and delivery offer a glimmer of hope in a currently limited pipeline of new antibiotics. One strategy involves conjugating iron-chelating microbial siderophores to an antibiotic or antimicrobial agent to enhance uptake and antibacterial potency. Cefiderocol (S-649266) is a promising cephalosporin–catechol conjugate currently in phase III clinical trials that utilizes iron-mediated active transport and demonstrates enhanced potency against multi-drug resistant (MDR) Gram-negative pathogens. Such molecules demonstrate that siderophore–antibiotic conjugates could be important future medicines to add to our antibiotic arsenal. This review is written in the context of the chemical design of siderophore–antibiotic conjugates focusing on the differing siderophore, linker, and antibiotic components that make up conjugates. We selected chemically distinct siderophore–antibiotic conjugates as exemplary conjugates, rather than multiple analogues, to highlight findings to date. The review should offer a general guide to the uninitiated in the molecular design of siderophore–antibiotic conjugates.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 942
Author(s):  
Sílvia A. Sousa ◽  
Joana R. Feliciano ◽  
Tiago Pita ◽  
Catarina F. Soeiro ◽  
Beatriz L. Mendes ◽  
...  

Nosocomial bacterial infections are associated with high morbidity and mortality, posing a huge burden to healthcare systems worldwide. The ongoing COVID-19 pandemic, with the raised hospitalization of patients and the increased use of antimicrobial agents, boosted the emergence of difficult-to-treat multidrug-resistant (MDR) bacteria in hospital settings. Therefore, current available antibiotic treatments often have limited or no efficacy against nosocomial bacterial infections, and novel therapeutic approaches need to be considered. In this review, we analyze current antibacterial alternatives under investigation, focusing on metal-based complexes, antimicrobial peptides, and antisense antimicrobial therapeutics. The association of new compounds with older, commercially available antibiotics and the repurposing of existing drugs are also revised in this work.


2016 ◽  
Author(s):  
Eric van der Helm ◽  
Lejla Imamovic ◽  
Mostafa M Hashim Ellabaan ◽  
Willem van Schaik ◽  
Anna Koza ◽  
...  

AbstractThe emergence of antibiotic resistance in human pathogens has become a major threat to modern medicine and in particular hospitalized patients. The outcome of antibiotic treatment can be affected by the composition of the gut resistome either by enabling resistance gene acquisition of infecting pathogens or by modulating the collateral effects of antibiotic treatment on the commensal microbiome. Accordingly, knowledge of the gut resistome composition could enable more effective and individualized treatment of bacterial infections. Yet, rapid workflows for resistome characterization are lacking. To address this challenge we developed the poreFUME workflow that deploys functional metagenomic selections and nanopore sequencing to resistome mapping. We demonstrate the approach by functionally characterizing the gut resistome of an ICU patient. The accuracy of the poreFUME pipeline is >97 % sufficient for the reliable annotation of antibiotic resistance genes. The poreFUME pipeline provides a promising approach for efficient resistome profiling that could inform antibiotic treatment decisions in the future.


2014 ◽  
Vol 20 (1) ◽  
pp. 43
Author(s):  
Catalina Prada-Peñaranda ◽  
Angela-Victoria Holguin-Moreno ◽  
Andres-Fernando González-Barrios ◽  
Martha-Josefina Vives-Florez

Bacteria easily acquire resistance to antimicrobial agents; this reduces the number of effective antibiotics available to treat bacterial infections. Food contamination by bacteria also generates important economic losses and health risks. Products for human consumption must be free of antibiotics used in clinical treatments, and the control of bacteria with antimicrobials is strictly regulated; however, there is a lack of development of new antibiotics. As a result, the development of new antimicrobial strategies is vital. Viruses that infect bacteria called bacteriophages (phages) have been proposed as an alternative treatment in an approach known as phage-therapy. Several studies have evaluated and demonstrated their effectiveness against pathogenic bacteria; currently, there are private companies dedicated to the development of new products based on phage cocktails, to control some bacterial infections. In Colombia, there is no previous information about the use of phages, but phage-therapy represents a great opportunity to use the diversity of the native microbiota. In this review, we present the perspectives for phage-therapy in Colombia as a treatment against bacterial infections.


2020 ◽  
Vol 25 (44) ◽  
pp. 4702-4716 ◽  
Author(s):  
Jéssika de Oliveira Viana ◽  
Alex France Messias Monteiro ◽  
José Maria Barbosa Filho ◽  
Luciana Scotti ◽  
Marcus Tullius Scotti

: Due to their versatile biological activity, Azoles are widely studied in pharmacochemistry. It is possible to use them in many applications and in studies aimed at discovering antiparasitic, antineoplastic, antiviral, antimicrobial compounds; and in the production of materials for treatment of varied pathologies. Based on their biological activity, our review presents several studies that involve this class of organic compounds. A bibliographic survey of this type can effectively contribute to pharmaceutical sciences, stimulating the discovery of new compounds, and structural improvements to biological profiles of interest. In this review, articles are discussed involving the synthesis of new compounds and chemoinformatic contributions. Current applications of azoles in both the pharmaceutical and agri-business sectors are well known, yet as this research highlights, azole compounds can also bring important contributions to the fight against many diseases. Among the heterocyclics, azoles are increasingly studied by research groups around the world for application against tuberculosis, HIV, fungal and bacterial infections; and against parasites such as leishmaniasis and trypanosomiasis. Our hope is that this work will help arouse the interest of research groups planning to develop new bioactives to fight against these and other diseases.


Sign in / Sign up

Export Citation Format

Share Document