Nanomedicine against Alzheimer’s and Parkinson’s disease

2020 ◽  
Vol 26 ◽  
Author(s):  
Ankit Tandon ◽  
Sangh Jyoti Singh ◽  
Rajnish Kumar Chaturvedi

: Alzheimer’s and Parkinson’s disease are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology, but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss, how nanotechnology has enabled the researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.

2020 ◽  
Vol 20 (30) ◽  
pp. 2777-2788
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faizana Fayaz ◽  
Tareq Abu Izneid ◽  
Faheem Hyder Pottoo ◽  
...  

Parkinson’s disease (PD) is one of the most prevalent and severe neurodegenerative disease affecting more than 6.1 million people globally. It is characterized by age-related progressive deterioration of neurological functions caused by neuronal damage or neuronal death. During PD, the dopamineproducing cells in the substantia nigra region of the brain degenerate, which leads to symptoms like resting tremors and rigidity. Treatment of PD is very challenging due to the blood-brain barrier, which restricts the drug from reaching the brain. Conventional drug delivery systems possess a limited capacity to cross the blood barrier, leading to low bioavailability and high toxicity (due to off-site drug release). Therefore, it becomes necessary to accelerate the development of novel drug delivery systems, including nanoparticles, microemulsions, matrix systems, solid dispersions, liposomes, and solid lipid nanoparticles for the treatment of PD. Exosomes are biological lipid bilayer membrane vesicles produced by nearly all mammalian cells. The characteristics of vesicles are unique to their cell of origin and are primarily involved in intracellular communication. Exosomes, due to their nanoscale size, could easily permeate across the central nervous system, which makes them ideal for targeting the neurons in the substantia nigra. Exosomes could be efficient drug carrier systems for brain targeting, which can increase the efficacy of the drug and minimize the side effects. The review aims at providing a broad updated view of exosomes and their application in the treatment of PD.


2021 ◽  
pp. 107385842199000
Author(s):  
Maria Izco ◽  
Estefania Carlos ◽  
Lydia Alvarez-Erviti

Accumulating evidence suggests that exosomes play a key role in Parkinson’s disease (PD). Exosomes may contribute to the PD progression facilitating the spread of pathological alpha-synuclein or activating immune cells. Glial cells also release exosomes, and transmission of exosomes derived from activated glial cells containing inflammatory mediators may contribute to the propagation of the neuroinflammatory response. Glia-to-neuron transmission of exosomes containing alpha-synuclein may contribute to alpha-synuclein propagation and neurodegeneration. Additionally, miRNAs can be transmitted among cells via exosomes inducing changes in the genetic program of the target cell contributing to PD progression. Exosomes also represent a promising drug delivery system. The brain is a difficult target for drugs of all classes because the blood-brain barrier excludes most macromolecular drugs. One of the major challenges is the development of vehicles for robust delivery to the brain. Targeted exosomes may have the potential for delivering therapeutic agents, including proteins and gene therapy molecules, into the brain. This review summarizes recent advances in the role of exosomes in PD pathology progression and their potential use as drug delivery system for PD treatment, the two faces of the exosomes in PD.


2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


2021 ◽  
Author(s):  
David J. Brooks

AbstractIn this paper, the structural and functional imaging changes associated with sporadic and genetic Parkinson’s disease and atypical Parkinsonian variants are reviewed. The role of imaging for supporting diagnosis and detecting subclinical disease is discussed, and the potential use and drawbacks of using imaging biomarkers for monitoring disease progression is debated. Imaging changes associated with nonmotor complications of PD are presented. The similarities and differences in imaging findings in Lewy body dementia, Parkinson’s disease dementia, and Alzheimer’s disease are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carmen Gasca-Salas ◽  
Beatriz Fernández-Rodríguez ◽  
José A. Pineda-Pardo ◽  
Rafael Rodríguez-Rojas ◽  
Ignacio Obeso ◽  
...  

AbstractMR-guided focused ultrasound (MRgFUS), in combination with intravenous microbubble administration, has been applied for focal temporary BBB opening in patients with neurodegenerative disorders and brain tumors. MRgFUS could become a therapeutic tool for drug delivery of putative neurorestorative therapies. Treatment for Parkinson’s disease with dementia (PDD) is an important unmet need. We initiated a prospective, single-arm, non-randomized, proof-of-concept, safety and feasibility phase I clinical trial (NCT03608553), which is still in progress. The primary outcomes of the study were to demonstrate the safety, feasibility and reversibility of BBB disruption in PDD, targeting the right parieto-occipito-temporal cortex where cortical pathology is foremost in this clinical state. Changes in β-amyloid burden, brain metabolism after treatments and neuropsychological assessments, were analyzed as exploratory measurements. Five patients were recruited from October 2018 until May 2019, and received two treatment sessions separated by 2–3 weeks. The results are set out in a descriptive manner. Overall, this procedure was feasible and reversible with no serious clinical or radiological side effects. We report BBB opening in the parieto-occipito-temporal junction in 8/10 treatments in 5 patients as demonstrated by gadolinium enhancement. In all cases the procedures were uneventful and no side effects were encountered associated with BBB opening. From pre- to post-treatment, mild cognitive improvement was observed, and no major changes were detected in amyloid or fluorodeoxyglucose PET. MRgFUS-BBB opening in PDD is thus safe, reversible, and can be performed repeatedly. This study provides encouragement for the concept of BBB opening for drug delivery to treat dementia in PD and other neurodegenerative disorders.


NeuroImage ◽  
2019 ◽  
Vol 190 ◽  
pp. 79-93 ◽  
Author(s):  
David Meder ◽  
Damian Marc Herz ◽  
James Benedict Rowe ◽  
Stéphane Lehéricy ◽  
Hartwig Roman Siebner

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Valentina Vellani ◽  
Lianne P de Vries ◽  
Anne Gaule ◽  
Tali Sharot

Humans are motivated to seek information from their environment. How the brain motivates this behavior is unknown. One speculation is that the brain employs neuromodulatory systems implicated in primary reward-seeking, in particular dopamine, to instruct information-seeking. However, there has been no causal test for the role of dopamine in information-seeking. Here, we show that administration of a drug that enhances dopamine function (dihydroxy-L-phenylalanine; L-DOPA) reduces the impact of valence on information-seeking. Specifically, while participants under Placebo sought more information about potential gains than losses, under L-DOPA this difference was not observed. The results provide new insight into the neurobiology of information-seeking and generates the prediction that abnormal dopaminergic function (such as in Parkinson’s disease) will result in valence-dependent changes to information-seeking.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2485
Author(s):  
Charysse Vandendriessche ◽  
Arnout Bruggeman ◽  
Caroline Van Cauwenberghe ◽  
Roosmarijn E. Vandenbroucke

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are incurable, devastating neurodegenerative disorders characterized by the formation and spreading of protein aggregates throughout the brain. Although the exact spreading mechanism is not completely understood, extracellular vesicles (EVs) have been proposed as potential contributors. Indeed, EVs have emerged as potential carriers of disease-associated proteins and are therefore thought to play an important role in disease progression, although some beneficial functions have also been attributed to them. EVs can be isolated from a variety of sources, including biofluids, and the analysis of their content can provide a snapshot of ongoing pathological changes in the brain. This underlines their potential as biomarker candidates which is of specific relevance in AD and PD where symptoms only arise after considerable and irreversible neuronal damage has already occurred. In this review, we discuss the known beneficial and detrimental functions of EVs in AD and PD and we highlight their promising potential to be used as biomarkers in both diseases.


Sign in / Sign up

Export Citation Format

Share Document