Nanostructured Lipid Carriers (NLCs): Nose-to-Brain Delivery and Theranostic Application

2020 ◽  
Vol 21 (14) ◽  
pp. 1136-1143 ◽  
Author(s):  
Javed Ahmad ◽  
Md. Rizwanullah ◽  
Saima Amin ◽  
Musarrat Husain Warsi ◽  
Mohammad Zaki Ahmad ◽  
...  

Background: Nanostructured lipid carriers (NLCs) are in high demand in the existing pharmaceutical domain due to its high versatility. It is the newer generation of lipid nanoparticulate systems having a solid matrix and greater stability at room temperature. Objective: To review the evidence related to the current state of the art of the NLCs system and its drug delivery perspectives to the brain. Methods: Scientific data search, review of the current state of the art and drug delivery perspectives to the brain for NLCs were undertaken to assess the applicability of NLCs in the management of neurological disorders through an intranasal route of drug administration Results: NLCs are designed to fulfill all the industrial needs like simple technology, low cost, scalability, and quantifications. Biodegradable and biocompatible lipids and surfactants used for NLCs have rendered them acceptable from regulatory perspectives as well. Apart from these, NLCs have unique properties of high drug payload, modulation of drug release profile, minimum drug expulsion during storage, and incorporation in various dosage forms like gel, creams, granules, pellets, powders for reconstitution and colloidal dispersion. Ease of surface- modification of NLCs enhances targeting efficiency and reduces systemic toxicity by providing site-specific delivery to the brain through the intranasal route of drug administration. Conclusion: The present review encompasses the in-depth discussion over the current state of the art of NLCs, nose-to-brain drug delivery perspectives, and its theranostic application as useful tools for better management of various neurological disorders. Further, pharmacokinetic consideration and toxicity concern is also discussed specifically for the NLCs system exploited in nose-to-brain delivery.

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1929 ◽  
Author(s):  
Salman Ul Islam ◽  
Adeeb Shehzad ◽  
Muhammad Bilal Ahmed ◽  
Young Sup Lee

Although the global prevalence of neurological disorders such as Parkinson’s disease, Alzheimer’s disease, glioblastoma, epilepsy, and multiple sclerosis is steadily increasing, effective delivery of drug molecules in therapeutic quantities to the central nervous system (CNS) is still lacking. The blood brain barrier (BBB) is the major obstacle for the entry of drugs into the brain, as it comprises a tight layer of endothelial cells surrounded by astrocyte foot processes that limit drugs’ entry. In recent times, intranasal drug delivery has emerged as a reliable method to bypass the BBB and treat neurological diseases. The intranasal route for drug delivery to the brain with both solution and particulate formulations has been demonstrated repeatedly in preclinical models, including in human trials. The key features determining the efficacy of drug delivery via the intranasal route include delivery to the olfactory area of the nares, a longer retention time at the nasal mucosal surface, enhanced penetration of the drugs through the nasal epithelia, and reduced drug metabolism in the nasal cavity. This review describes important neurological disorders, challenges in drug delivery to the disordered CNS, and new nasal delivery techniques designed to overcome these challenges and facilitate more efficient and targeted drug delivery. The potential for treatment possibilities with intranasal transfer of drugs will increase with the development of more effective formulations and delivery devices.


2021 ◽  
Vol 11 (3) ◽  
pp. 3640-3651

Neurological disorders are increasing worldwide due to the rapidly aging population, which increases healthcare costs. Drug delivery to the brain is challenging because of the brain's anatomy, and orally administered drugsare mostly unable to cross BBB. Intranasal (Nose to Brain) administration of drugs is one novel approach to address this challenge. Intranasal delivery has appeared to evade the blood-brain barrier (BBB) and deliver the drug into the CNS at a higher rate and degree than another traditional route. Transport of drugs from the nasal cavity to the brain along with olfactory and trigeminal nerves. The purpose of this review is drug delivery by the intranasal route for treating neurological disorders like Parkinson’s and depression because drug delivery by other routes is unable to cross BBB. Still, delivery through the intranasal route by using the nanotechnology approach is possible to deliver the drug directly to CNS.


2020 ◽  
Vol 26 (19) ◽  
pp. 2291-2305 ◽  
Author(s):  
Saurabh Mittal ◽  
Muhammad U. Ashhar ◽  
Farheen F. Qizilbash ◽  
Zufika Qamar ◽  
Jasjeet K. Narang ◽  
...  

Background: Human brain is amongst the most complex organs in human body, and delivery of therapeutic agents across the brain is a tedious task. Existence of blood brain barrier (BBB) protects the brain from invasion of undesirable substances; therefore it hinders the transport of various drugs used for the treatment of different neurological diseases including glioma, Parkinson's disease, Alzheimer's disease, etc. To surmount this barrier, various approaches have been used such as the use of carrier mediated drug delivery; use of intranasal route, to avoid first pass metabolism; and use of ligands (lactoferrin, apolipoprotein) to transport the drug across the BBB. Ligands bind with proteins present on the cell and facilitate the transport of drug across the cell membrane via. receptor mediated, transporter mediated or adsorptive mediated transcytosis. Objective: The main focus of this review article is to illustrate various studies performed using ligands for delivering drug across BBB; it also describes the procedure used by various researchers for conjugating the ligands to the formulation to achieve targeted action. Methods: Research articles that focused on the used of ligand conjugation for brain delivery and compared the outcome with unconjugated formulation were collected from various search engines like PubMed, Science Direct and Google Scholar, using keywords like ligands, neurological disorders, conjugation, etc. Results and Conclusion: Ligands have shown great potential in delivering drug across BBB for treatment of various diseases, yet extensive research is required so that the ligands can be used clinically for treating neurological diseases.


2016 ◽  
Vol 371 (1688) ◽  
pp. 20150106 ◽  
Author(s):  
Margaret M. McCarthy

Studies of sex differences in the brain range from reductionistic cell and molecular analyses in animal models to functional imaging in awake human subjects, with many other levels in between. Interpretations and conclusions about the importance of particular differences often vary with differing levels of analyses and can lead to discord and dissent. In the past two decades, the range of neurobiological, psychological and psychiatric endpoints found to differ between males and females has expanded beyond reproduction into every aspect of the healthy and diseased brain, and thereby demands our attention. A greater understanding of all aspects of neural functioning will only be achieved by incorporating sex as a biological variable. The goal of this review is to highlight the current state of the art of the discipline of sex differences research with an emphasis on the brain and to contextualize the articles appearing in the accompanying special issue.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1445
Author(s):  
Stefano Leporatti

Clay–polymer composite materials is an exciting area of research and this Special Issue aims to address the current state-of-the-art of “Polymer Clay Nano-Composites” for several applications, among them antibacterial, environmental, water remediation, dental, drug delivery and others [...]


2016 ◽  
Vol 45 (17) ◽  
pp. 4690-4707 ◽  
Author(s):  
Benjamí Oller-Salvia ◽  
Macarena Sánchez-Navarro ◽  
Ernest Giralt ◽  
Meritxell Teixidó

Blood–brain barrier shuttle peptides are increasingly more potent and versatile tools to enhance drug delivery to the brain.


2014 ◽  
Vol 87 (3) ◽  
pp. 433-444 ◽  
Author(s):  
Lucia Gastaldi ◽  
Luigi Battaglia ◽  
Elena Peira ◽  
Daniela Chirio ◽  
Elisabetta Muntoni ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9264
Author(s):  
Kinga Piorecka ◽  
Jan Kurjata ◽  
Wlodzimierz A. Stanczyk

The development in the area of novel anticancer prodrugs (conjugates and complexes) has attracted growing attention from many research groups. The dangerous side effects of currently used anticancer drugs, including cisplatin and other platinum based drugs, as well their systemic toxicity is a driving force for intensive search and presents a safer way in delivery platform of active molecules. Silicon based nanocarriers play an important role in achieving the goal of synthesis of the more effective prodrugs. It is worth to underline that silicon based platform including silica and silsesquioxane nanocarriers offers higher stability, biocompatibility of such the materials and pro-longed release of active platinum drugs. Silicon nanomaterials themselves are well-known for improving drug delivery, being themselves non-toxic, and versatile, and tailored surface chemistry. This review summarizes the current state-of-the-art within constructs of silicon-containing nano-carriers conjugated and complexed with platinum based drugs. Contrary to a number of other reviews, it stresses the role of nano-chemistry as a primary tool in the development of novel prodrugs.


Sign in / Sign up

Export Citation Format

Share Document