Synergistic Effect of Tazobactam on Amikacin MIC in Acinetobacter baumannii Isolated from Burn Patients in Tehran, Iran

2020 ◽  
Vol 21 (10) ◽  
pp. 997-1004
Author(s):  
Leila Azimi ◽  
Sahel V. Tahbaz ◽  
Reza Alaghehbandan ◽  
Farank Alinejad ◽  
Abdolaziz R. Lari

Background: Burn is still an important global public health challenge. Wound colonization of antibiotic resistant bacteria such as Acinetobacter baumannii can lead to high morbidity and mortality in burn patients. The aim of this study was to evaluate the inhibitory effect of tazobactam on efflux pump, which can cause aminoglycoside resistant in A. baumannii isolated from burn patients. Methods: In this study, 47 aminoglycoside resistant A. baumannii spp. were obtained from burn patients, admitted to the Shahid Motahari Burns Hospital in Tehran, Iran, during June-August 2018. The inhibitory effect of tazobactam against adeB such as efflux pump was evaluated by Minimum Inhibitory Concentration (MIC) determination of amikacin alone and in combination with tazobactam. Fractional Inhibitory Concentration index (FIC) was used to determine the efficacy of tazobactam/ amikacin combination. Further, semi-quantitative Real- Time PCR was performed to quantify the expression rates of the adeB gene before and after addition of tazobactam/amikacin. Results: The MIC values were significantly reduced when a combined amikacin and tazobactam was utilized. The most common interaction observed was synergistic (78.2%), followed by additive effects (21.8%), as per FIC results. The adeB mRNA expression levels were found to be downregulated in 60.7% of isolates treated with tazobactam. Conclusions: Tazobactam can have impact on resistance to aminoglycoside by inhibiting efflux pump. Thus, the combination of tazobactam with amikacin can be used as an alternative treatment approach in multidrug resistant A. baumannii infections.

2020 ◽  
pp. 59-67
Author(s):  
Sulaiman D. Sulaiman ◽  
Ghusoon A. Abdulhasan

  Pseudomonas aeruginosa is considered as a developing opportunistic nosocomial pathogen and is well-known for its multidrug resistance that can be efficiently treated by a combination of antibiotics andefflux pump inhibitors (EPI). Therefore, the purpose of this study was to investigate the effect of curcumin as an EPI for the enhancement of the effectiveness of antibiotics against multidrug resistant (MDR) isolates ofP. aeruginosa. Susceptibility patterns of suspected bacteria was determined using the disc diffusion method andresistant bacteria were identified using chromogenic agar and 16S rDNA. The effectsof curcuminon the enhancement of antibiotics’s activity was evaluated usingthe broth microdilution method.The susceptibility patterns for 50 (67.6%) suspectedP. aeruginosaisolates showed that 36 (72%) of these isolateswere resistant to one of the used antibiotics,whereasonly 21 (42%) were MDR. The highest percentage of resistance was observedtoceftazidime (66%) followed by ciprofloxacin and levofloxacin (40%). Only 35 isolates were specified by chromogenic agar and 16S rDNAas P. aeruginosa.The minimal inhibitory concentration (MIC) of 35 isolates for ciprofloxacin resistant was between 4 and128 µg/ml while for ceftazidime was between 64and 512 µg/ml. After the addition of 50 μg/ml curcumin with ciprofloxacin, there wasa significant increase in the sensitivity (p≤ 0.01) of 13 MDR P.aeroginosa isolates whereas no differences in the sensitivity to ceftazidime were recorded before and after addition ofcurcumin. In conclusion, the results of this study show that curcumin can decrease the MIC value of ciprofloxacin in MDR isolates of P. aeruginosaand can be used as a native compound to enhance the treatment of resistant isolates with ciprofloxacin.


2020 ◽  
Vol 3 (3) ◽  
pp. 33-37
Author(s):  
Oscar M Mosquera ◽  
◽  
Roman Y. Ramirez-Rueda ◽  
Aura M. Blandon ◽  
◽  
...  

Species of Piper genus are known for their numerous biological activities and their diverse phytochemical composition. The object of this work was to evaluate the antibacterial activity of extracts obtained from seven Piperaceae species. Broth microdilution technique was used for biological evaluation and some phytochemical nuclei present in the bioactive extracts were identified by thin layer chromatography and characterization reactions. Among the most important results, it is highlighted the inhibitory effect of the methanolic extract from Piper pesaresanum against Methicillin-resistant Staphylococcus aureus ATTC 43300, with minimum inhibitory concentration of 62.5 μg/mL. Additionally, secondary metabolites such as alkaloids, phenols and flavonoids were detected in this extract. In conclussion, the species P. pesaresanum showed high potential for bioguided search of antibacterial compounds against multidrug resistant S. aureus.


2016 ◽  
Vol 60 (10) ◽  
pp. 5942-5948 ◽  
Author(s):  
Thongpan Leangapichart ◽  
Philippe Gautret ◽  
Karolina Griffiths ◽  
Khadidja Belhouchat ◽  
Ziad Memish ◽  
...  

ABSTRACTPilgrims returning from the Hajj (pilgrimage to Mecca) can be carriers of multidrug-resistant bacteria (MDR). Pharyngeal and rectal swab samples were collected from 98 pilgrims before and after they traveled to the Hajj in 2014 to investigate the acquisition of MDR bacteria. The bacterial diversity in pharyngeal swab samples was assessed by culture with selective media. There was a significantly higher diversity of bacteria in samples collected after the return from the Hajj than in those collected before (P= 0.0008). Surprisingly,Acinetobacter baumanniistrains were isolated from 16 pharyngeal swab samples (1 sample taken during the Hajj and 15 samples taken upon return) and 26 post-Hajj rectal swab samples, while none were isolated from samples taken before the Hajj. Testing of all samples by real-time PCR targetingblaOXA-51gave positive results for only 1% of samples taken during the Hajj, 21/90 (23.3%) pharyngeal swab samples taken post-Hajj, and 35/90 (38.9%) rectal swab samples taken post-Hajj. One strain ofA. baumanniiisolated from the pharynx was resistant to imipenem and harbored ablaOXA-72carbapenemase gene. Multilocus sequence typing analysis of 43A. baumanniiisolates revealed a huge diversity of 35 sequence types (STs), among which 18 were novel STs reported for the first time in this study. Moreover, we also found oneEscherichia coliisolate, collected from a rectal swab sample from a pilgrim taken after the Hajj, which harboredblaNDM-5,blaCTX-M-15,blaTEM-1, andaadA2(ST2659 and ST181). In conclusion, pilgrims are at a potential risk of acquiring and transmitting MDRAcinetobacterspp. and carbapenemase-producing Gram-negative bacteria during the Hajj season.


2020 ◽  
Author(s):  
Niki Laal-Kargar ◽  
Samaneh Dolatabadi ◽  
Mahnaz Mohtashami

Abstract Background: Acinetobacter baumannii and Enterocoocus faecalis increase their resistance against antibiotic by producing biofilm. Antibiotic resistance has become a massive public health threat that require novel effective antibacterial and antibiofilm alternatives. The use of probiotics is interested to prevent and control certain infections. The objective of this study was to investigate the antibacterial and antibiofilm property of probiotics and synbiotics against multidrug-resistant A. baumannii and E. faecalis. Methods: The antimicrobial and the antibiofilm activities of cell- free supernatants of four strains of Lactobacillus against 20 clinical multi-drug resistant (MDR) isolates of Acinetobacter baumannii and Enterocoocus faecalis were determined in the presence of 0.3% of sorbitol, raffinose, citrate, trehalose, inulin, and riboflavin using well diffusion agar and micro-dilution method. Results: The cell- free supernatant of L. rhamnosus with citrate and trehalose showed the best antibacterial activity against MDR A. baumannii (28.8±2.1mm, 1.128 μL/mL), and L. rhamnosus with all of prebiotics against MDR E. faecalis (29.8±0 mm, 1.128 μL/mL) compare to probiotic alone. The prebiotics could improve the inhibitory effect of probiotics against the Gram-negative A. baumannii higher than Gram-positive E. faecalis. Biofilm formation was reduced in both pathogens in presence of synbiotics. L. plantarum with riboflavin and L. rhamnosus with or without inulin potently inhibits E. faecalis (50±0.86%) and A. baumannii (75±6.5%) biofilm formation, respectively. Conclusions: The results of current study support the antibiofilm activity of metabolites produced by synbiotics, and suggest their use as suitable adjuvants as well as biocontrol agents for treatment.


2020 ◽  
Vol 21 ◽  
Author(s):  
Andressa Kelly Ferreira e Silva ◽  
Antonielly Campinho dos Reis ◽  
Emanuelly Elanny Andrade Pinheiroc ◽  
Jonas Nascimento de Sousa ◽  
Felipe Araújo de Alcântara Oliveira ◽  
...  

Background: Microbial resistance to antibiotics is a global public health problem, which requires urgent attention. Platonia insignis is a native species from the eastern Brazilian Amazon, used in the treatment of burns and wounds. Objectives: To evaluate the antimicrobial activity of the hydroalcoholic extract of P. insignis (PIHA), the ethyl acetate fraction (PIAE), and its subfraction containing a mixture of biflavonoids (BF). Moreover, the effect of these natural products on the antibiotic activity against S. aureus strains overexpressing efflux pump genes was also evaluated. Methods: Minimal inhibitory concentrations were determined against different species of microorganisms. To evaluate the modulatory effect on the Norfloxacin-resistance, the MIC of this antibiotic was determined in the absence and presence of the natural products at subinhibitory concentrations. Inhibition of the EtBr efflux assays were conducted in the absence or presence of the natural products. Results: PIHA showed a microbicidal effect against S. aureus and C. albicans, while PIAE was bacteriosctatic for S. aureus. PIAE and BF at subinhibitory concentrations were able to reduce the MIC of Norfloxacin acting as modulating agents. BF was able to inhibit the efflux of EtBr efflux in S. aureus strains overexpressing specific efflux pump genes. Conclusion: P. inignisis a source of efflux pump inhibitors, including volkensiflavone and morelloflavone which were able to potentiate the Norfloxacin activity by NorA inhibition, being also able to inhibit QacA/B, TetK and MsrA. Volkensiflavone and morelloflavone could be used as adjuvant in the antibiotic therapy of multidrug resistant S. aureus strains overexpressing efflux pumps.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 678
Author(s):  
Abdallah S. Abdelsattar ◽  
Rana Nofal ◽  
Salsabil Makky ◽  
Anan Safwat ◽  
Amera Taha ◽  
...  

The emergence and evolution of antibiotic-resistant bacteria is considered a public health concern. Salmonella is one of the most common pathogens that cause high mortality and morbidity rates in humans, animals, and poultry annually. In this work, we developed a combination of silver nanoparticles (AgNPs) with bacteriophage (phage) as an antimicrobial agent to control microbial growth. The synthesized AgNPs with propolis were characterized by testing their color change from transparent to deep brown by transmission electron microscopy (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The phage ZCSE2 was found to be stable when combined with AgNPs. Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated for AgNPs, phage, and their combination. The results indicated that MIC and MBC values were equal to 23 µg/mL against Salmonella bacteria at a concentration of 107 CFU/mL. The combination of 0.4× MIC from AgNPs and phage with Multiplicity of Infection (MOI) 0.1 showed an inhibitory effect. This combination of AgNPs and phage offers a prospect of nanoparticles with significantly enhanced antibacterial properties and therapeutic performance.


2021 ◽  
Vol 9 (2) ◽  
pp. 354
Author(s):  
Nuria Crua Asensio ◽  
Javier Macho Rendón ◽  
Marc Torrent Burgas

The rise in the number of antibiotic-resistant bacteria has become a serious threat to health, making it important to identify, characterize and optimize new molecules to help us to overcome the infections they cause. It is well known that Acinetobacter baumannii has a significant capacity to evade the actions of antibacterial drugs, leading to its emergence as one of the bacteria responsible for hospital and community-acquired infections. Nonetheless, how this pathogen infects and survives inside the host cell is unclear. In this study, we analyze the time-resolved transcriptional profile changes observed in human epithelial HeLa cells after infection by A. baumannii, demonstrating how it survives in host cells and starts to replicate 4 h post infection. These findings were achieved by sequencing RNA to obtain a set of Differentially Expressed Genes (DEGs) to understand how bacteria alter the host cells’ environment for their own benefit. We also determine common features observed in this set of genes and identify the protein–protein networks that reveal highly-interacted proteins. The combination of these findings paves the way for the discovery of new antimicrobial candidates for the treatment of multidrug-resistant bacteria.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Balaram Khamari ◽  
Prakash Kumar ◽  
Bulagonda Eswarappa Pradeep

Introduction. Nitrofurantoin is one of the preferred antibiotics in the treatment of uropathogenic multidrug-resistant (MDR) infections. However, resistance to nitrofurantoin in extensively drug-resistant (XDR) bacteria has severely limited the treatment options. Gap statement. Information related to co-resistance or collateral sensitivity (CS) with reference to nitrofurantoin resistant bacteria is limited. Aim. To study the potential of nitrofurantoin resistance as an indicator of the XDR phenotype in Enterobacteriaceae . Methods. One hundred (45 nitrofurantoin-resistant, 21 intermediately resistant and 34 nitrofurantoin-susceptible) Enterobacteriaceae were analysed in this study. Antibiotic susceptibility testing (AST) against nitrofurantoin and 17 other antimicrobial agents across eight different classes was performed by using the Vitek 2.0 system. The isolates were screened for the prevalence of acquired antimicrobial resistance (AMR) and efflux pump genes by PCR. Results. In total, 51 % of nitrofurantoin-resistant and 28 % of intermediately nitrofurantoin resistant isolates exhibited XDR characteristics, while only 3 % of nitrofurantoin-sensitive isolates were XDR (P=0.0001). Significant co-resistance was observed between nitrofurantoin and other tested antibiotics (β-lactam, cephalosporin, carbapenem, aminoglycoside and tetracycline). Further, the prevalence of AMR and efflux pump genes was higher in the nitrofurantoin-resistant strains compared to the susceptible isolates. A strong association was observed between nitrofurantoin resistance and the presence of bla PER-1, bla NDM-1, bla OXA-48, ant(2) and oqxA-oqxB genes. Tigecycline (84 %) and colistin (95 %) were the only antibiotics to which the majority of the isolates were susceptible. Conclusion. Nitrofurantoin resistance could be an indicator of the XDR phenotype among Enterobacteriaceae , harbouring multiple AMR and efflux pump genes. Tigecycline and colistin are the only antibiotics that could be used in the treatment of such XDR infections. A deeper understanding of the co-resistance mechanisms in XDR pathogens and prescription of AST-based appropriate combination therapy may help mitigate this problem.


2020 ◽  
Vol 17 (11) ◽  
pp. 1168-1176
Author(s):  
Dennapa SAELOH ◽  
Monton VISUTTHI ◽  
Marisa LEEHA ◽  
Surasak LIMSUWAN ◽  
Supayang Piyawan VORAVUTHIKUNCHAI

Acinetobacter baumannii (A. baumannii) has been known as a major cause of nosocomial bacterial infections worldwide. The bacteria are increasingly associated with a broad spectrum of antibiotic resistance, and this has become a widespread concern in a variety of hospitals.Antibiotic development and alternative treatment have become priorities for the treatment of bacterial infections.This study investigated the efficacy of meropenem in combination with five ethanolic extracts of plants in Myrtaceae against extensively drug-resistant (XDR) A. baumannii. The resistant phenotype was previously determined by microdilution method. XDR-A. baumannii strains showed resistance to meropenem with the minimum inhibitory concentration (MIC) in a range of 16 - 128 µg/mL, whereas the MIC value of all extracts, including Calistemon lancealatus, Eucalyptus citridora, Rhodomytus tomentasa, Syzygium cumini, and Xanthortemon chrysanthus, was over 1,000 µg/mL. Interestingly, all extracts potentiated the activity of the antibiotic by reducing the MIC values of the antibiotic. Xanthortemon chrysanthus extract displayed excellent synergism against the bacteria by decreasing the MIC value of the drug greater than 8-fold. In addition, the extract, at concentrations of 31.25, 62.5, 125, 250, 500, and 1,000 µg/mL, obviously increased the inhibitory effect of meropenem (1/4´MIC) against A. baumannii. The percentage of bacterial growth inhibition by combination was 87.9, 88.8, 91.8, 93.6, 99.9, and 100, respectively. The results supported that the extract could improve the activity of ineffective antibiotics against drug-resistant pathogens.Therefore, the findings may serve as therapeutic options for XDR-A. baumannii infections in the future.


Sign in / Sign up

Export Citation Format

Share Document